Answer:
1
Step-by-step explanation:
Answer:
See below
Step-by-step explanation:
We start by dividing the interval [0,4] into n sub-intervals of length 4/n
![[0,\displaystyle\frac{4}{n}],[\displaystyle\frac{4}{n},\displaystyle\frac{2*4}{n}],[\displaystyle\frac{2*4}{n},\displaystyle\frac{3*4}{n}],...,[\displaystyle\frac{(n-1)*4}{n},4]](https://tex.z-dn.net/?f=%5B0%2C%5Cdisplaystyle%5Cfrac%7B4%7D%7Bn%7D%5D%2C%5B%5Cdisplaystyle%5Cfrac%7B4%7D%7Bn%7D%2C%5Cdisplaystyle%5Cfrac%7B2%2A4%7D%7Bn%7D%5D%2C%5B%5Cdisplaystyle%5Cfrac%7B2%2A4%7D%7Bn%7D%2C%5Cdisplaystyle%5Cfrac%7B3%2A4%7D%7Bn%7D%5D%2C...%2C%5B%5Cdisplaystyle%5Cfrac%7B%28n-1%29%2A4%7D%7Bn%7D%2C4%5D)
Since f is increasing in the interval [0,4], the upper sum is obtained by evaluating f at the right end of each sub-interval multiplied by 4/n.
Geometrically, these are the areas of the rectangles whose height is f evaluated at the right end of the interval and base 4/n (see picture)

but

so the upper sum equals

When
both
and
tend to zero and the upper sum tends to

In this case we have the following trinomial:

By definition, the factorization is a technique that consists in the mathematical decomposition of an expression, in the form of a product. Having said that, we can factor the given trinomial in the following way:
We look for two numbers that when multiplied give as result 42, and when summed give as result -13.
The numbers that meet these two conditions are -6 and -7 by:

So, we have:

Answer:
The binomials associated with the given trinomial are
and
.
X + 4 > -15
- 4
x > -19
So your answer is x > -19, I hope this helps!