Answer:
The solution to the inequality |x-2|>10 in interval notation is given by -8<x<12
Step-by-step explanation:
An absolute value inequality |x-2|>10 is given.
It is required to solve the inequality and write the solution in interval form.
To write the solution, first solve the given absolute value inequality algebraically and then write it in interval notation.
Step 1 of 2
The given absolute value inequality is $|x-2|>10$.
The inequality can be written as
x-2<10 and x-2>-10
First solve the inequality, x-2<10.
Add 2 on both sides,
x-2<10
x-2+2<10+2
x<12
Step 2 of 2
Solve the inequality x-2>-10.
Add 2 on both sides,
x-2>-10
x-2+2>-10+2
x>-8
The solution of the inequality in interval notation is given by -8<x<12.
9514 1404 393
Answer:
(b) ∠STU
Step-by-step explanation:
Transversal UT between parallel sides RU and ST creates alternate interior angles RUT and STU. These are congruent.
∠STU has the same measure as ∠RUT
_____
The figure shown is a trapezoid, not a parallelogram.
Answer:
Step-by-step explanation:
row to_2white paint
row3-0 cups
row 4-5cups
row 5-4 cups
Answer:
-8/3 is greater than -17/3
Step-by-step explanation:
Answer:
B) Y=85x
Step-by-step explanation:
The actual rate of change is 75 so you need to find which one(s) have a greater one. The other 2 that are equations have a less rate of change so it is B.
Hope this helps. Pls give brainliest.