Answer:
The probability that none of the 10 calls result in a reservation is 0.60%. In turn, the probability that at least one call results in a reservation being made is 99.40%.
Step-by-step explanation:
Since approximately 40% of the calls to an airline reservation phone line result in a reservation being made, supposing an operator handles 10 calls, to determine what is the probability that none of the 10 calls result in a reservation, and what is the probability that at least one call results in a reservation being made, the following calculations must be performed:
0.6 ^ 10 = X
0.006 = X
0.006 x 100 = 0.60%
Therefore, the probability that none of the 10 calls result in a reservation is 0.60%.
100 - 0.60 = 99.40
In turn, the probability that at least one call results in a reservation being made is 99.40%.
The range would be -1 to 8
Solution A1 is correct hope it helpsss
Answer:
A. 7,348
Step-by-step explanation:
P = le^kt
intitial population = 500
time = 4 hrs
end population = 3,000
So we have all these variables and we need to solve for what the end population will be if we change the time to 6 hours. First, we need to find the rate of the growth(k) so we can plug it back in. The given formula shows a exponencial growth formula. (A = Pe^rt) A is end amount, P is start amount, e is a constant that you can probably find on your graphing calculator, r is the rate, and t is time.
A = Pe^rt
3,000 = 500e^r4
now we can solve for r
divide both sides by 500
6 = e^r4
now because the variable is in the exponent, we have to use a log

ln(6) = 4r
we can plug the log into a calculator to get
1.79 = 4r
divide both sides by 4
r = .448
now lets plug it back in
A = 500e^(.448)(6 hrs)
A = 7351.12
This is closest to answer A. 7,348
1). The slope is 6 and the y-intercept is 10 .
2). The slope is zero and the y-intercept is 100.