You can look at magnesium, it can react with oxygen to form oxides. (chemical) it is malleable and a solid at room temperature. (physical)
to measure its density, the mass and volume can be worked out and from this density too. look up the equation, it is quite easy :)
physical changes -- it can be melted, and oxidized <span />
Answer:

Explanation:
The formula for the single-slit diffraction is

where
y is the distance of the n-minimum from the centre of the diffraction pattern
D is the distance of the screen from the slit
d is the width of the slit
is the wavelength of the light
In this problem,


, with n=2 (this is the distance of the 2nd-order minimum from the central maximum)
Solving the formula for d, we find:

Answer:
A) 580m
B) 0 m/s
C) 9.8m/s^2
D) downward
E) 10.87s
F) 106.62 m/s
Explanation:
A) The distance traveled by the rocket is calculated by using the following expression:

a: acceleration of the rocket = 2.90 m/s^2
t: time of the flight = 20.0 s

B) In the highest point the rocket has a velocity with magnitude zero v = 0m/s because there the rocket stops.
C) The engines of the rocket suddenly fails in the highest point. There, the acceleration of the rocket is due to the gravitational force, that is 9.8 m/s^2
D) The acceleration points downward
E) The time the rocket takes to return to the ground is given by:

10.87 seconds
F) The velocity just before the rocket arrives to the ground is:

Answer:
the field at the center of solenoid 2 is 12 times the field at the center of solenoid 1.
Explanation:
Recall that the field inside a solenoid of length L, N turns, and a circulating current I, is given by the formula:
Then, if we assign the subindex "1" to the quantities that define the magnetic field (
) inside solenoid 1, we have:

notice that there is no dependence on the diameter of the solenoid for this formula.
Now, if we write a similar formula for solenoid 2, given that it has :
1) half the length of solenoid 1 . Then 
2) twice as many turns as solenoid 1. Then 
3) three times the current of solenoid 1. Then 
we obtain:

Answer:
b. 9.5°C
Explanation:
= Mass of ice = 50 g
= Initial temperature of water and Aluminum = 30°C
= Latent heat of fusion = 
= Mass of water = 200 g
= Specific heat of water = 4186 J/kg⋅°C
= Mass of Aluminum = 80 g
= Specific heat of Aluminum = 900 J/kg⋅°C
The equation of the system's heat exchange is given by

The final equilibrium temperature is 9.50022°C