"1 watt" means 1 joule of energy per second.
75 W means 75 joules/sec .
Energy = (75 Joule/sec) x (12 min) x (60 sec/min)
Energy = (75 x 12 x 60) (Joule-<em>min-sec</em> / <em>sec-min</em>)
<em>Energy = 54,000 Joules</em>
<h2>
<u>How</u><u> </u><u>to</u><u> </u><u>solve</u><u>?</u></h2>
We know that, Velocity is the rate of displacement covered. Displacement is the shortest path between the Initial and Final point covered by the body. So,
- Velocity = Displacement / Time
And, when it comes to Average velocity, It is the total displacement by total time taken. So, By using this let's solve this question.....
<h2>
<u>Solution</u><u>:</u></h2>
✏️ Refer to the attachment...
Let the body goes to point A that is 7 m East of the Initial point. Then it comes backward because West is opposite to East in perpendicular direction. It covers 1.5 m backwards in the same line to reach B which is the Final point.
So,
- Displacement = Final point - Initial point
⇛ Displacement = 7 m - 1.5 m
⇛ Displacement = 5.5 m
Total time taken,
⇛ 2 hours + 1 hour
⇛ 3 hours
Finding Average displacement,
⇛ Total displacement / Total time taken
⇛ 5.5 m / 3 hours
⇛ 1.83333.... hours
So, the Final answer is,

<u>━━━━━━━━━━━━━━━━━━━━</u>
Substances evaporate at different rates
For problems especially pertaining motion, it is best to illustrate the problem to help you understand the problem. The picture I've attached is my illustration based on what I understood from the problem. Suppose the diamond in the picture is the nozzle. It is placed 1.5 m above the ground (bold horizontal line). The water coming out of the nozzle follows the direction of the arrows until it falls to the ground next to you holding the nozzle. When you turn it off, the water at the topmost part slowly comes back to the ground in 1.8 seconds.
Unfortunately, you weren't able to complete the problem. However, I would make a smart guess. I think it is logical that the problem would ask how high did the water shoot upwards from the nozzle, denoted as x. In order to solve this, we use the equations for free-falling objects:
t = √2h/g
1.8 = √2h/9.81
h = 15.9 m
To find the height of the water from the nozzle, we subtract the total height to 1.5 m to determine x.
x = 15.9 - 1.5 =
14.4 m
Answer: 2.70 cm
Given:
Density, 
Mass, m=184 g
Formula Used:
Volume, V = density/mass
where a is the side of the cube

hence, the length of one side of silver cube is 2.70 cm