7,14,21,28,35,42,49,56,63,70,77,84,91,98,105,112,119,126
18,36,54,72,90,108,126
So the first person to get both of them is the 126th person
Hello.
C) x=4π/3
The variable x in the cotangent argument has a unit coefficient, so the period is π, just as it is in the parent function cot(x).
Can you graph y = cot(x)? By subtracting the constant π/6 from the argument, that graph is translated to the right by π/6. Just as with cot(x), it is decreasing everywhere.
Have a nice day
Answer:
Two angles and the non-included side of one triangle are congruent to the corresponding parts of another triangle. Which congruence theorem can be used to prove that the triangles are congruent? Two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle.
Answer:
Arranging from longest (at top) to shortest (at bottom)
DF
EF
DE
Step-by-step explanation:
We need to place the sides of triangle DE, DF and EF from longest to shortest.
The triangle has longest side that is opposite to the largest angle
We know two angles < E= 61° , <F= 59° we need to find <D
Sum of angles of triangle = 180°
So, 61°+59°+<D=180°
120°+<D=180°
<D=180°-120°
<D=60°
So, the largest angle is <E= 61°
The longest side must be opposite to <E so, the side is DF
The second largest angle is <D=60° so, second side will be EF
The smallest angle is <F=59° so, third (shortest) side will be DE
Arranging from longest (at top) to shortest (at bottom)
DF
EF
DE