Answer:
1 cm3 is = 1 ml. Therefore 1000 g of seawater = 973.71 mL.
Explanation:
Seawater salinity will vary from place to place and with the temperature of the seawater. Of course the composition of dissolved substances in seawater, along with salt that is, will also vary from place to place.
On average, seawater in the world's oceans has a salinity of approximately 3.5%, or 35 parts per thousand. This means that for every 1 litre (1000 mL) of seawater, there are 35 grams of salts (mostly, but not entirely, sodium chloride) dissolved in it.
Seawater has an average density of 1.027 g/cm3, but this varies with temperature and salinity over a range of about 1.020 to 1.029.
Answer:
The energy from food and then from plants and then from sun.
As sun is the ultimate source of energy.
Explanation:
Distance = 100 m, 1000m, marathon
As the distance is covered by the person, so the muscular energy is used and thus the energy comes form out food.
As we know that the energy can neither be created nor be destroyed it can transform from one form to another.
So, the energy form the food which we consume is converted into the kinetic energy as we run.
Speed of sound = 340 m/s
Time taken for sound to reach observer = 3.2 seconds
Height = speed x time
= 340 x 3.2
= 1,088 meters
Explanation:
(a) Formula to calculate the capacitance is as follows.

Now, putting the given values into the above formula as follows.


= 0.291
or,
= ln (0.291)
= -1.23
C = 0.729 F
Hence, the value of capacitance is 0.729 F.
(b) Formula to calculate the constant of circuit is as follows.
T =
= 
= 2.259 sec
Therefore, the time constant of the circuit is 2.259 sec.
Answer:
a= 4.4×10 m/s^2
Explanation:
pressure P = E/c
Where, E = 100 W/m^2 intensity of light
c= speed of light = 3×10^8 m/s
P = 1000/ 3×10^8
P = 3.33×10^(-6) Pa
Force F = P×A
- P is the pressure and c= speed of light
F = 3.33×10^{-6}×6.65×10(-29)
= 2.22×10^{-6}
acceleration a = F/m = 2.22×10^{-6}/ 5.10×10^{-27}
a= 4.4×10 m/s^2