Answer:
y=-3/4x+5
Step-by-step explanation:
3x+4y>20
4y>-3x+20
y>-3/4x+5
2/5 = y/100
40/100 = y/100
Y=40
Set of equations that can be used to calculate rate for each plumber:
2A+8B+8C = 1,400 --- (1)
4A+7B+10C = 1,660 --- (2)
3A+9B+9C = 1,660 --- (3)
------------------------------------
2*(1) - (2)
------------------------------------
4A+16B+16C = 2,800
4A+7B+10C = 1,660 -
------------------------------------
9B+6C = 1,140 --- (4)
------------------------------------
3(2) -4(3)
-----------------------------------
12A+21B+30C = 4,980
12A+36B+36C = 6,600 -
-----------------------------------
-15B-6C = -1,620 --- (5)
------------------------------------
(4) + (5)
------------------------------------
9B+6C = 1140
-15B-6C = -1620 +
-------------------------------------
-6B = -480 => 6B = 480 => B = 480/6 = 80
-------------------------------------------------------
Using (4), 9(80)+6C = 1140
720+6C = 1140 => 6C = 1140-720 = 420 => C = 420/6 = 70
------------------------------------------------------------------------------
Using (1), 2A+8(80)+8(70) = 1400
2A+640+560 =1400 => 2A = 1400-640-560 = 200 => A = 200/2 = 100
----------------------------------------------------------------------------------------------
The rates are:
A = $100
B = $80
C = $70
--------------------------------
On Thursday, number of calls: A = 4 hrs, B = 6 hrs, C = 3 hrs
Money earned = 4*100+6*80+3*70 = $1,090
The cost function is
c = 0.000015x² - 0.03x + 35
where x = number of tires.
To find the value of x that minimizes cost, the derivative of c with respect to x should be zero. Therefore
0.000015*2x - 0.03 = 0
0.00003x = 0.03
x = 1000
Note:
The second derivative of c with respect to x is positive (= 0.00003), so the value for x will yield the minimum value.
The minimum cost is
Cmin = 0.000015*1000² - 0.03*1000 + 35
= 20
Answer:
Number of tires = 1000
Minimum cost = 20