Explanation:
Each codon codes for only one amino acid.
However, for one amino acid, multiple codons maybe encoded. While there are 64 codons, and four nucleotides in groups of three, only 20 amino acids may be encoded by these triplets, showing that the code is degenerate.
RNA codons determine certain amino acids, so the order in which the bases occur within in the codon sequence designates which amino acid is to be made bus with the four RNA nucleotides (Adenine, Guanine, Cysteine and Uracil). Up to 64 codons (with 3 as stop codons) determine amino acid synthesis. The stop codons ( UAG UGA UAA) terminate amino acid/ protein synthesis while the start codon AUG begins protein synthesis.
Further Explanation:
The message on DNA, called genes is copied by RNA polymerase, to form mRNA complementary sequence to that of the DNA strand. These are then translated into proteins in ribosomes; RNA codons determine certain amino acids, so the order in which the bases occur within in the codon sequence designates which amino acid is to be made bus with the four RNA nucleotides (Adenine, Guanine, Cysteine and Uracil). Up to 64 codons (with 3 as stop codons) determine amino acid synthesis. The stop codons ( UAG UGA UAA) terminate amino acid/ protein synthesis while the start codon AUG begins protein synthesis.
Nucleic acids like DNA stores all of an organism’s genetic information. Nucleic acid molecules comprise the nitrogenous bases Guanine, Adenine, Cytosine and Thymine. Conversely, RNA nucleotides are Adenine, Guanine, Cysteine and Uracil. These pair up as base pairs due to their varied structure- largely influenced by the location of N molecule.
In certain combinations, these bases form codons which act as instructions for protein synthesis. Codons are three nucleotide bases encoding an amino acid or signal at the beginning or end of protein synthesis. Thus, these contribute to the broad diversity of living organisms, as varied combinations of these 64 codons can produce many proteins which can be organized into cells, tissues and organisms.
Learn more about transcription at brainly.com/question/11339456
Learn more about DNA and RNA at brainly.com/question/2416343?source=aid8411316
#LearnWithBrainly