Find the horizontal components vcos30 ...one goes right and one goes left so they cancel each other.
Find vertical components vsin30.....there are two of them.... so 2vcos30....hey presto... resultant velocity = 2vCos30
Answer:
v = 9.936 m/s
Explanation:
given,
height of cliff = 40 m
speed of sound = 343 m/s
assuming that time to reach the sound to the player = 3 s
now,
time taken to fall of ball


t = 2.857 s
distance
d = v x t
d = v x 2.875
time traveled by the sound before reaching the player



distance traveled by the wave in this time'
r = 0.143 x 343
r= 49.05 m
now,
we know.
d² + h² = r²
d² + 40² = 49.05²
d =28.387 m
v x 2.875=28.387 m
v = 9.936 m/s
Answer:
The work done by this force can be found via the following formula

Explanation:
Alternatively, the work done by the object is equal to the elastic potantial energy done by the spring.

Answer:
Explanation:
Given a square side loop of length 10cm
L=10cm=0.1m
Then, Area=L²
Area=0.1²
Area=0.01m²
Given that, frequency=60Hz
And magnetic field B=0.8T
a. Flux Φ
Flux is given as
Φ=BA Sin(wt)
w=2πf
Φ=BA Sin(2πft)
Φ=0.8×0.01 Sin(2×π×60t)
Φ=0.008Sin(120πt) Weber
b. EMF in loop
Emf is given as
EMF= -N dΦ/dt
Where N is number of turns
Φ=0.008Sin(120πt)
dΦ/dt= 0.008×120Cos(120πt)
dΦ/dt= 0.96Cos(120πt)
Emf=-NdΦ/dt
Emf=-0.96NCos(120πt). Volts
c. Current induced for a resistance of 1ohms
From ohms law, V=iR
Therefore, Emf=iR
i=EMF/R
i=-0.96NCos(120πt) / 1
i=-0.96NCos(120πt) Ampere
d. Power delivered to the loop
Power is given as
P=IV
P=-0.96NCos(120πt)•-0.96NCos(120πt)
P=0.92N²Cos²(120πt) Watt
e. Torque
Torque is given as
τ=iL²B
τ=-0.96NCos(120πt)•0.1²×0.8
τ=-0.00768NCos(120πt) Nm