Answer:
(C) The frequency decrease and intensity decrease
Explanation:
The Doppler effect describes the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source, or the wave source is moving relative to the observer, or both.
if the observer and the source move away from each other as is the case for this problem, the wavelength heard by the observer is bigger.
The frequency is the inverse from the wavelength, so the frequency heard will increase.
The sound intensity depends inversely on the area in which the sound propagates. When the buzzer is close, the area is from a small sphere, but as the buzzer moves further away, the wave area will be from a larger sphere and therefore the intensity will decrease.
Answer:
7.74m/s
Explanation:
Mass = 35.9g = 0.0359kg
A = 39.5cm = 0.395m
K = 18.4N/m
At equilibrium position, there's total conservation of energy.
Total energy = kinetic energy + potential energy
Total Energy = K.E + P.E
½KA² = ½mv² + ½kx²
½KA² = ½(mv² + kx²)
KA² = mv² + kx²
Collect like terms
KA² - Kx² = mv²
K(A² - x²) = mv²
V² = k/m (A² - x²)
V = √(K/m (A² - x²) )
note x = ½A
V = √(k/m (A² - (½A)²)
V = √(k/m (A² - A²/4))
Resolve the fraction between A.
V = √(¾. K/m. A² )
V = √(¾ * (18.4/0.0359)*(0.395)²)
V = √(0.75 * 512.53 * 0.156)
V = √(59.966)
V = 7.74m/s
Answer:
Cable color codes are very important for example, If something is not wired properly, it can result in injuries, deaths, fires, and many other problems. This is why there are well-established wire color codes to ensure those working with an around this type of equipment can ensure everything is wired safely and effectively. If we used three phase cables without color code, this can lead too incorrect things that might be a hazard too get not fix and learning new color codes would be hard therefore we should stick too the same color codes for cables and it saves the hassle for needing too check every cable cord color then the original one signed too it.
Answer:
Tension, T = 0.0115 N
Explanation:
Given that,
Mass of the plastic ball, m = 1.1 g
Length of the string, l = 56 cm
A charged rod brought near the ball exerts a horizontal electrical force F on it, causing the ball to swing out to a 21.0 degree angle and remain there. According to attached figure :

T is tension in the string

So, the tension in the string is 0.0115 N.
Answer:
Its impossible for a machine to work without an energy source
Explanation:
pls give brainliest