Answer:
T = 480.2N
Explanation:
In order to find the required force, you take into account that the sum of forces must be equal to zero if the object has a constant speed.
The forces on the boxes are:
(1)
T: tension of the rope
M: mass of the boxes 0= 49kg
g: gravitational acceleration = 9.8m/s^2
The pulley is frictionless, then, you can assume that the tension of the rope T, is equal to the force that the woman makes.
By using the equation (1) you obtain:

The woman needs to pull the rope at 480.2N
Take a look at a simple reaction like the one below:
In this reaction some reactant A is turned into some product B. The rate of reaction can be represented by a decrease in concentration of A over time or as the increase of B over time. This is written:
At a constant volume and
number of moles of the gas the ratio of T and P is equal to some constant.
At another set of condition, the constant is still the same. Calculations are
as follows:
T1/P1 = T2/P2
P2 = T2 x P1 / T1
P2 = 473.15 x 1.00 / 293.15
<span>P2 = 1.61 atm</span>
Gay Lussac's Law states: At a constant volume Pressure<span> divided by </span>Temperature<span> is</span>constant<span> P/T = k Together these three laws form the foundation of the Ideal </span>Gas<span>Law. Objective: Students will </span>investigate<span> Gay Lussac's Law relating </span>pressure<span> and</span>temperature<span> at a </span><span>constant temperature.</span>
Polypeptides contain more than 10 amino acids joined by peptide bonds.