The answer is 35/10 and 6/10
False, it is not a repeating decimal
9/4 = 2.25
So we are given the mean and the s.d.. The mean is 100 and the sd is 15 and we are trying the select a random person who has an I.Q. of over 126. So our first step is to use our z-score equation:
z = x - mean/s.d.
where x is our I.Q. we are looking for
So we plug in our numbers and we get:
126-100/15 = 1.73333
Next we look at our z-score table for our P-value and I got 0.9582
Since we are looking for a person who has an I.Q. higher than 126, we do 1 - P. So we get
1 - 0.9582 = 0.0418
Since they are asking for the probability, we multiply our P-value by 100, and we get
0.0418 * 100 = 4.18%
And our answer is
4.18% that a randomly selected person has an I.Q. above 126
Hopes this helps!
Answer:
The second option will cost her less than the first one.
Step-by-step explanation:
In order to solve this problem we will create two functions to represent the cost of the car in function of the miles drove by her.
For the first option we have:

For the second option we have:

Since she intends to drive it for 10,000 miles per year for 6 years, then the total mileage she intends to drive her car is 60,000 miles. Applying this to the formula of each car and we have:


The second option will cost her less than the first one.
I would try using a table. It might work better.