Evaluate triple integral ∫ ∫ ∫ 8xydV, where E lies under the plane z = 1+x+y and above the E region in the xy-plane bounded by t
he curves y = √ x, y = 0, and x = 1.
1 answer:
Answer:

Step-by-step explanation:

![= \int\limits^{1}_{0} \int\limits^{\sqrt{x}}_{0} [ 8xyz]^{z=1+x+y}_{z=0} \ \ dy dx](https://tex.z-dn.net/?f=%3D%20%5Cint%5Climits%5E%7B1%7D_%7B0%7D%20%5Cint%5Climits%5E%7B%5Csqrt%7Bx%7D%7D_%7B0%7D%20%5B%208xyz%5D%5E%7Bz%3D1%2Bx%2By%7D_%7Bz%3D0%7D%20%20%5C%20%20%20%5C%20dy%20dx)


![= \int\limits^{1}_{0} \ [ 4xy^2+4x^2y^2+2.7xy^3]^{ y= \sqrt{x}}_{y-0} \ \ dx](https://tex.z-dn.net/?f=%3D%20%5Cint%5Climits%5E%7B1%7D_%7B0%7D%20%20%5C%20%5B%204xy%5E2%2B4x%5E2y%5E2%2B2.7xy%5E3%5D%5E%7B%20y%3D%20%5Csqrt%7Bx%7D%7D_%7By-0%7D%20%5C%20%5C%20%20dx)



You might be interested in
Answer:
10/18 and 20/36
Step-by-step explanation:
To answer this question you need to add 20 minutes to 5 times 800, which equals 4020, then you divide 4020 by 60 and your answer is 67!
Sec t (theta) - 2 = 0
sec t = 2
1/ cos t = 2
cos t = 1/2
Answer:
t = π / 3 + 2 k π , or : t = 5 π / 3 + 2 kπ,
k ∈ Z
Answer:
400m^3
Step-by-step explanation:
Answer:
