Answer:

Step-by-step explanation:
<u><em>Given Equation is </em></u>
=> 
Comparing it with
, we get
=> a = 2, b = 7 and c = -9
So,
Sum of roots = α+β = 
α+β = -7/2
Product of roots = αβ = c/a
αβ = -9/2
<em>Now, Finding the equation whose roots are:</em>
α/β ,β/α
Sum of Roots = 
Sum of Roots = 
Sum of Roots = 
Sum of roots = 
Sum of roots = 
Sum of Roots = 
Sum of roots = 
Sum of roots = S = 
Product of Roots = 
Product of Roots = P = 1
<u><em>The Quadratic Equation is:</em></u>
=> 
=> 
=> 
=> 
This is the required quadratic equation.
Answer:
Median = 98
Step-by-step explanation:
Organize the numbers in order from least to greatest: 43,56,98,106,112.
Than begin crossing the numbers out
56,98,106
98
Answer:
y = 50x + 3.5
Step-by-step explanation:
Given:
Distance already covered = 3.5 miles
100 miles covered in 2 hour
FInd;
Equation of given scenario
Computation:
Assume;
Total miles covered = y
Total number of hours = x
Speed of car = 100 / 2
Speed of car = 50 miles per hour
Total miles covered = Distance already covered + [Speed of car][Total number of hours]
y = 3.5 + [50][x]
y = 50x + 3.5
Answer:
X>3
Step-by-step explanation:
Answer:
The answer is below
Step-by-step explanation:
The horizontal asymptote of a function f(x) is gotten by finding the limit as x ⇒ ∞ or x ⇒ -∞. If the limit gives you a finite value, then your asymptote is at that point.
![\lim_{x \to \infty} f(x)=A\\\\or\\\\ \lim_{x \to -\infty} f(x)=A\\\\where\ A\ is\ a\ finite\ value.\\\\Given\ that \ f(x) =25000(1+0.025)^x\\\\ \lim_{x \to \infty} f(x)= \lim_{x \to \infty} [25000(1+0.025)^x]= \lim_{x \to \infty} [25000(1.025)^x]\\=25000 \lim_{x \to \infty} [(1.025)^x]=25000(\infty)=\infty\\\\ \lim_{x \to -\infty} f(x)= \lim_{x \to -\infty} [25000(1+0.025)^x]= \lim_{x \to -\infty} [25000(1.025)^x]\\=25000 \lim_{x \to -\infty} [(1.025)^x]=25000(0)=0\\\\](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20f%28x%29%3DA%5C%5C%5C%5Cor%5C%5C%5C%5C%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20f%28x%29%3DA%5C%5C%5C%5Cwhere%5C%20A%5C%20is%5C%20a%5C%20finite%5C%20value.%5C%5C%5C%5CGiven%5C%20that%20%5C%20f%28x%29%20%3D25000%281%2B0.025%29%5Ex%5C%5C%5C%5C%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20f%28x%29%3D%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5B25000%281%2B0.025%29%5Ex%5D%3D%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5B25000%281.025%29%5Ex%5D%5C%5C%3D25000%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5B%281.025%29%5Ex%5D%3D25000%28%5Cinfty%29%3D%5Cinfty%5C%5C%5C%5C%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20f%28x%29%3D%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20%5B25000%281%2B0.025%29%5Ex%5D%3D%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20%5B25000%281.025%29%5Ex%5D%5C%5C%3D25000%20%5Clim_%7Bx%20%5Cto%20-%5Cinfty%7D%20%5B%281.025%29%5Ex%5D%3D25000%280%29%3D0%5C%5C%5C%5C)
