Given:
Angle A = 18.6°
Angle B = 93°
Length of side AB = 646 meters
To find:
the distance across the river, distance between BC
Steps:
Since we know the measure of 2 angles of a triangle we can find the measure of the third angle.
18.6° + 93° + ∠C = 180°
111.6° + ∠C = 180°
∠C = 180° - 111.6°
∠C = 68.4°
Therefore the measure of angle C is 68.4°.
now we can use the law of Sines,


![BC[sin(68.4)] = 646 [sin(18.6)]](https://tex.z-dn.net/?f=BC%5Bsin%2868.4%29%5D%20%3D%20646%20%5Bsin%2818.6%29%5D)



meters
Therefore, the distance across the river is 222 meters.
Happy to help :)
If anyone need more help, feel free to ask
Well....if the triangle shape stays the same then the angle stays the same even if its enlarged in size. It will stay the same because you didn't change the way the shpae looks like, it is just zoomed in.
Answer: The angle measurements stay the same when the figure is enlarged or reduced
There is no rate of change of Function 1. It's slope(rate of change) is zero.
Function 2 has a slope of 2.
Answer:
......................................,........