Answer:
The volume of this given solid figure is 18 cubic units.
Step-by-step explanation:
Here, given the volume of 1 small cube = 1 cubic units
Now, counting the total cubes in the given solid figure, we get
Number of cubes in base row = 10
Number of cubes in middle row = 6
Number of cubes in top most row = 2
So, the total number of cubes in the figure = 10 + 6 + 2 = 18 cubes
So, the volume of 18 cubes = 18 ( Volume of 1 small cube)
= 18 x (1 cubic units) = 18 cubic units
Hence, the volume of this given solid figure is 18 cubic units.
w represents width
4w represents length
d represents diagonal
w2 + (4w)2 = d2
w2 + 16w2 = d2
17w2 = d2
±w√17 = d
The diagonal is the width times √17.
5/6 + 3/6 = 8/6, you divide 6 into 8, and get 1 2/6, you can reduce that to 1 1/3
Sentence: one and one third
Answer:
see below the first three problems
Step-by-step explanation:
f(g(-2))
First, find g(-2) using function g(x). Then use that value as input for function f(x).
g(x) = -2x + 1
g(-2) = -2(-2) + 1
g(-2) = 5
f(x) = 5x
f(5) = 5(5)
f(5) = 25
f(g(-2)) = 25
g(h(3))
First, find h(3) using function h(x). Then use that value as input for function g(x).
h(x) = x^2 + 6x + 8
h(3) = 3^2 + 6(3) + 8 = 9 + 18 + 8
h(3) = 35
g(x) = -2x + 1
g(35) = -2(35) + 1 = -70 + 1
g(35) = -69
g(h(3)) = -69
f(g(3a))
First, find g(3a) using function g(x). Then use that value as input for function f(x).
g(x) = -2x + 1
g(3a) = -2(3a) + 1
g(3a) = -6a + 1
f(x) = 5x
f(-6a + 1) = 5(-6a + 1)
f(-6a + 1) = -30a + 5
f(g(3a)) = -30a + 5
Answer:
arc AB = 70°
arc BC = 110°
arc ABC = 180°
arc CDB = 250°
Step-by-step explanation:
Since these angles are not inscribed, but are at the center point of the circle, the angles and arcs will be the same measure.
Solve for arc AB:
Angle AFB = 70°, so arc AB = 70°
Solve for arc BC:
Angle AFC is a straight angle so it is 180°. To find angle BFC, subtract angle AFB from 180°.
180 - 70 = 110°
Since angle BFC = 110°, arc BC = 110°
Solve for arc ABC:
Add arc AB and arc BC together.
70° + 110° = 180°
arc ABC = 180°
Solve for arc CDB:
There are 360° in a cirlce. To find arc CDB, subtract arc BC from 360°.
360° - 110° = 250°
arc CDB = 250°