1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NNADVOKAT [17]
3 years ago
15

32x+16=32 solve for x

Mathematics
2 answers:
Pepsi [2]3 years ago
4 0

Answer:

x=0.5

Step-by-step explanation:

32x+16=32

       -16    -16

32x=16

÷32 ÷32

x=0.5   or    x=1/2

NemiM [27]3 years ago
4 0

Answer:

x=0.5

Step-by-step explanation:

First things first we need to get x on a side by it self. So we subtract 16 from 32 and your new equation looks like this

32x=16

Next we can divide 16/32 and we get 0.5

So x=0.5

You might be interested in
A spinner has four different colors red green blue and yellow if the spinner is spun once in a coin is flipped what are the chan
Marrrta [24]

Answer:

3/4 and 1/2

Step-by-step explanation:

8 0
3 years ago
Multiple choice please answer help
krok68 [10]

From the congruent alternate interior angles resulting from the parallel lines, we have the equation 8x-34=5x+2. Solving, we have x=12^\circ and \angle D E F =5x+2=\boxed{62^\circ}.

6 0
3 years ago
Which table represents a linear function​
Slav-nsk [51]

Answer:

Option 1

Step-by-step explanation:

Option 1 is the correct answer, because a linear function goes up on the x and y axes by the same amount. In this case, the x-coordinates increase by 1, and the y-coordinates increase by 4.

6 0
2 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
What is the 23rd term of the arithmetic sequence where a1 = 8 and a9 = 48?
yKpoI14uk [10]
a_1=8
a_2=a_1+d=8+d
a_3=a_2+d=(8+d)+d=8+2d
a_4=a_3+d=(8+d)+2d=8+3d
...
a_9=8+8d=48\implies d=5
a_{10}=8+9d
...
a_{23}=8+22d=118
8 0
3 years ago
Read 2 more answers
Other questions:
  • What’s the correct answer for this question?
    10·1 answer
  • I NEED HELP!!!!!!!!!!!!!!!!!!!!!!
    14·2 answers
  • Help me, please asap just tell me which one it is
    5·2 answers
  • What's 5x-4y=-12 need help​
    6·2 answers
  • A. What are the approximate coordinates of the point of intersection of the two
    10·1 answer
  • Pls help me this is 7th grade (ADVANCED)
    7·1 answer
  • What is the distance along the unit circle between any two successive 8th roots of 1?
    8·1 answer
  • A school basketball team has an expense account and a fundraising account. After t weeks, the balance of the expense account is
    5·1 answer
  • Furaha sold a mobile phone at sh.6000 making a profit of 20%. what was the buying price????​
    7·1 answer
  • Can someone give me the answer please
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!