Answer:
(Explanation)
Step-by-step explanation:
Part A:
The graph of y =
+ 2 will be translated 2 units up from the graph of y =
.
If you plug in 0 for x, you get a y-value of 2. The 2 is also not included with the
, which is why it doesn't translate left.
This is what graph A should look like:
[Attached File]
Part B:
The graph of y =
- 2 will be translated 2 units down from the graph of y =
.
If you plug in 0 for x, you get a y-value of -2. The 2 is also not included with the
, which is why it doesn't translate right.
This is what graph B should look like:
[Attached File]
Part C:
The graph of y = 2
is a stretched version of the graph y =
. Numbers that are greater than 1 stretch and open up and numbers less than -1 stretch and open down.
This is what graph C should look like:
[Attached File]
Part D:
The graph of y =
is a compressed version of the graph y =
. Numbers that are in-between 0 and 1, and -1 and 0 are compressed.
This is what graph D should look like:
[Attached File]
Answer:
v=a3
Step-by-step explanation:
the internet told me
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:

Derivative Property [Addition/Subtraction]:

Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Reverse Power Rule]:

Integration Property [Multiplied Constant]:

Integration Methods: U-Substitution and U-Solve
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given.</em>
<em />
<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution/u-solve</em>.
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Derivative Rules and Properties]:

- [<em>du</em>] Rewrite [U-Solve]:

<u>Step 3: Integrate Pt. 2</u>
- [Integral] Apply U-Solve:

- [Integrand] Simplify:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Apply Integration Rule [Reverse Power Rule]:

- [<em>u</em>] Back-substitute:

∴ we have used u-solve (u-substitution) to <em>find</em> the indefinite integral.
---
Learn more about integration: brainly.com/question/27746495
Learn more about Calculus: brainly.com/question/27746485
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Answer:
18.75%
Step-by-step explanation:
(round answer if needed)