Answer:
0.11mol/dm³
Explanation:
The reaction expression is given as:
HCl + NaOH → NaCl + H₂O
Volume of acid = 25cm³ = 0.025dm³
Volume of base = 18.4cm³ = 0.0184dm³
Concentration of base = 0.15mol/dm³
Solution:
The concentration of hydrochloric acid = ?
To solve this problem, let us first find the number of moles of the base;
Number of moles = concentration x volume
Number of moles = 0.15mol/dm³ x 0.0184dm³ = 0.00276mol
From the balanced reaction equation;
1 mole of NaOH will combine with 1 mole of HCl
Therefore, 0.00276mol of the base will combine with 0.00276mol of HCl
So;
Concentration of acid =
=
= 0.11mol/dm³
The masses can be found by substractions:
- Mass of CaSO₄.H2O (hydrate):
16.05 g - 13.56 g = 2.49 g
15.07 g - 13.56 g = 1.51 g
- The mass of water is equal to the difference between the mass of the hydrate and the mass of the anhydrate:
2.49 g - 1.51 g = 0.98 g
- The percent of water is found by the formula:
massWater ÷ massHydrate * 100%
0.98 g ÷ 2.49 g * 100% = 39.36%
- The mole of water is calculated using water's molecular weight (18g/mol):
0.98 g ÷ 18 g/mol = 0.054 mol water
- A similar procedure is made for the mole of salt (CaSO₄ = 136.14 g/mol)
1.51 g ÷ 136.14 g/mol = 0.011 mol CaSO₄
- The ratio of mole of water to mole of anhydrate is:
0.054 mol water / 0.011 mol CaSO₄ = 0.49
In other words the molecular formula for the hydrate salt is CaSO₄·0.5H₂O
The balanced reaction is as follows;
BiCl₂ + Na₂SO₄ --> 2NaCl + BiSO₄
this is a double displacement reaction
the oxidation number of Bi is +2 in both BiCl₂ and BiSO₄
oxidation number of Cl is -1 in both BiCl₂ and NaCl
oxidation number of Na is +1 in both Na₂SO₄ and NaCl
oxidation numbers of elements in SO₄²⁻ remains the same in both compounds.Therefore the oxidation state in any of the elements in the reaction doesn't change. Neither of the elements show an increase or decrease in the oxidation numbers .
Answer for this question is no element decreases its oxidation number.
Answer:
The radial velocity curve describes how fast a star is moving in its orbit around a center of mass ( m )
Curve amplitude : This is the maximum value of the radial velocity curve
Radial velocity shape ; The shape of Radial velocity curve is parabolic in nature
Orbital period : Orbital period is the time taken by the star to make one complete rotation in its orbit
Explanation:
The radial velocity curve describes how fast a star is moving in its orbit around a center of mass ( m ) while Curve amplitude is the maximum value of the radial velocity curve also The shape of Radial velocity curve is parabolic in nature. and Orbital period is the time taken by the star to make one complete rotation in its orbit