| u | = √(2² + (-1²)) = √5
| v | = √ ( 1² + (-8)² = √65
cos (u,v) = ( u * v ) / (| u | * | v |) =
(2 * 1 + ( -1 ) * ( - 8 )) / √5 √ 65 = (2 + 8) / √5 √65 = 10 / (√5 √ 65 )
The length of a larger diagonal:
d 1² = | u |² + 2 |u| |v| + | v |² = 5 + (2 √5 √65 * 10 / √5 √65 )+65
d 1² = 70 + 20 = 90
d 1 = √ 90 = 3√10
d 2² = 70 - 20 = 50
d 2 = √50 = 5√2
Answer:
The lengths of the diagonals are: 3√10 and 5√2 .
Answer:
32√5
Step-by-step explanation:
We have the right triangles PQA and PQB as well as the given right triangle QAB.
cot(PAQ) = 2/5 = QA/PQ
cot(PBQ) = 3/5 = QB/PQ
cot(PAQ) / cot(PBQ) = (2/5) / (3/5) = 2/3
cot(PAQ) / cot(PBQ) = (QA/PQ) / (QB/PQ) = QA / QB
QA / QB = 2/3
QA = (2/3) QB
QB = (3/2) QA
By the Pythagorean Theorem we have:
(QA)² + 32² = (QB)²
(QA)² + 32² = (3/2 QA)²
(QA)² + 1024 = (9/4) (QA)²
(5/4) (QA)² = 1024
(QA)² = (4/5)1024 = 4096/5
QA = 64/√5
Solve for PQ.
cot(PAQ) = QA/PQ
PQ = QA / cot(PAQ)
PQ = (64/√5) / (2/5) = 32√5
The height of the tower is 32√5.
Answer:
36
Step-by-step explanation:
Cross multiply
27 x 16 all divided by 12 =36
Answer:
40
Step-by-step explanation:
Use the Outside Angles Theorem,

Answer:
Y=-4x+8
Step-by-step explanation: