After plotting the quadrilateral in a Cartesian plane, you can see that it is not a particular quadrilateral. Hence, you need to divide it into two triangles. Let's take ABC and ADC.
The area of a triangle with vertices known is given by the matrix
M =
![\left[\begin{array}{ccc} x_{1}&y_{1}&1\\x_{2}&y_{2}&1\\x_{3}&y_{3}&1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20x_%7B1%7D%26y_%7B1%7D%261%5C%5Cx_%7B2%7D%26y_%7B2%7D%261%5C%5Cx_%7B3%7D%26y_%7B3%7D%261%5Cend%7Barray%7D%5Cright%5D%20)
Area = 1/2· | det(M) |
= 1/2· | x₁·y₂ - x₂·y₁ + x₂·y₃ - x₃·y₂ + x₃·y₁ - x₁·y₃ |
= 1/2· | x₁·(y₂ - y₃) + x₂·(y₃ - y₁) + x₃·(y₁ - y₂) |
Therefore, the area of ABC will be:
A(ABC) = 1/2· | (-5)·(-5 - (-6)) + (-4)·(-6 - 7) + (-1)·(7 - (-5)) |
= 1/2· | -5·(1) - 4·(-13) - 1·(12) |
= 1/2 | 35 |
= 35/2
Similarly, the area of ADC will be:
A(ABC) = 1/2· | (-5)·(5 - (-6)) + (4)·(-6 - 7) + (-1)·(7 - 5) |
= 1/2· | -5·(11) + 4·(-13) - 1·(2) |
= 1/2 | -109 |
<span> = 109/2</span>
The total area of the quadrilateral will be the sum of the areas of the two triangles:
A(ABCD) = A(ABC) + A(ADC)
= 35/2 + 109/2
= 72
Answer:

Step-by-step explanation:
Let A1 be the area of one square and A2 be the area of second square
So,
A1 = s^2
where s is side of square

So side of one square is 
To calculate the length of fence we need to find the perimeter of the square
So,
P1 = 4 * s

For second square:

The perimeter will be:

So the total fence will be: P1+P2

I'm going to take a guess that you are wanting to convert 6.25 radians to degrees. If I'm wrong, then ignore this! Use the fact that 1 radian = 57.2958°. Using the factor label method of conversion, we have

. The radian label cancels leaving us with degrees. 6.25*57.2958=358.09°
Volume= 611 yd^3
Explanation=
V=L*W*H/3
V=10*13*14.1/3
V=611
3 Because 7 x 3 = 21 and 7 + 3 = 10
7 x w = 21 and 7 + w = 10