Answer: The required result is 15.
Step-by-step explanation: We are given to evaluate the following :
"6 choose 4".
Since we are to choose 4 from 6, so we have to use the combination of 6 different things chosen 4 at a time.
We know that
the formula for the combination of n different things chosen r at a time is given by

For the given situation, n = 6 and r = 4.
Therefore, we get

Thus, the required result is 15.