The three (3) security goals that would align and prioritize security efforts to the business goals of an organization are:
1. Confidentiality
2. Integrity
3. Availability
A security goal can be defined as both the short-term and long-term strategic objectives that detects and protects the assets of a business organization from theft or misappropriation by any internal or external party.
This ultimately implies that, it is very important that security goals of a business organization are aligned with its business goals.
Generally, there are three (3) main security goals for all business organizations and these include:
- <u>Confidentiality:</u> the confidentiality of all data and assets should be well protected.
- <u>Integrity:</u> the integrity of all data and assets should be preserved.
- <u>Availability:</u> all data and assets should be provided for authorized use only.
Read more on security goals here: brainly.com/question/25734235
Answer:
750
Explanation:
<em>I'm gonna make my best effort here... (it's been a long hecking time since SAT math last year :P)</em>
Set both equation equal:
5x = -15x + 3000
20x = 3000
x = 150
Plug into any equation because both are equal anyway:
y = 5x
y = 5(150)
y = 750
(a, b) --> (x, y)
The point is (150, 750) and b = 750
Using the binomial distribution, it is found that there is a:
- 0.0036 = 0.36% probability that both are allergic to pollen.
- 0.1164 = 11.64% probability that at least one is allergic to pollen.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
Researching the problem on the internet, it is found that:
- 6% of the population is allergic to pollen, hence p = 0.06.
- Two people are chosen at random, hence n = 2.
The probability that both are allergic is P(X = 2), hence:
P(X = 2) = 0.06^2 = 0.0036.
0.0036 = 0.36% probability that both are allergic to pollen.
The probability of at least one is:
P(X >= 1) = 1 - P(X = 0) = 1 - 0.94^2 = 1 - 0.8836 = 0.1164.
0.1164 = 11.64% probability that at least one is allergic to pollen.
More can be learned about the binomial distribution at brainly.com/question/24863377