The completely factored expression of 2x^2 + 4x + 3xy + 6y is (2x + 3y)(x + 2)
<h3>How to factor the polynomial?</h3>
The expression is given as:
2x^2 + 4x + 3xy + 6y
Group the expression into two
[2x^2 + 4x] + [3xy + 6y]
Factor out each group
2x(x + 2) + 3y(x + 2)
Factor out x + 2
(2x + 3y)(x + 2)
Hence, the completely factored expression of 2x^2 + 4x + 3xy + 6y is (2x + 3y)(x + 2)
Read more about factored expression at:
brainly.com/question/723406
#SPJ1
To solve this, you need to know slope-intercept form;
Where mx is the slope and b is the y-intercept form.
Now, looking at the values you have been provided, you can just plug them into the formula.
Let’s first write this in the slope form: y=mx+b.
m is the slope and b is the y intercept.
-2x-y=3
y=-2x-3
So the b, or the y intercept is -3
When forming a perfect square trinomial you need to "complete the square".
All of the steps to completing the square when solving an equation:
1. The leading coefficient must be 1.
2. Divide b by 2.
3. Square (b/2)
4. Add (b/2)^2 to both sides to keep the polynomial balanced.
5. You can now write the perfect square trinomial and solve.
x^2 - 3x
-3/2
(-3/2)^2 = 9/4 = 2 1/4
LETTER B
Answer:
D
Step-by-step explanation:
Divide 14 into 6