The length of a curve <em>C</em> parameterized by a vector function <em>r</em><em>(t)</em> = <em>x(t)</em> i + <em>y(t)</em> j over an interval <em>a</em> ≤ <em>t</em> ≤ <em>b</em> is

In this case, we have
<em>x(t)</em> = exp(<em>t</em> ) + exp(-<em>t</em> ) ==> d<em>x</em>/d<em>t</em> = exp(<em>t</em> ) - exp(-<em>t</em> )
<em>y(t)</em> = 5 - 2<em>t</em> ==> d<em>y</em>/d<em>t</em> = -2
and [<em>a</em>, <em>b</em>] = [0, 2]. The length of the curve is then





Answer:
x = 65
Step-by-step explanation:
Angles are equal because of the vertical angle thm
2x + 15 = 145
2x = 130
x = 65
Answer: The required solution is

Step-by-step explanation: We are given to solve the following differential equation :

Let us consider that
be an auxiliary solution of equation (i).
Then, we have

Substituting these values in equation (i), we get
![m^2e^{mt}+10me^{mt}+25e^{mt}=0\\\\\Rightarrow (m^2+10y+25)e^{mt}=0\\\\\Rightarrow m^2+10m+25=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{since }e^{mt}\neq0]\\\\\Rightarrow m^2+2\times m\times5+5^2=0\\\\\Rightarrow (m+5)^2=0\\\\\Rightarrow m=-5,-5.](https://tex.z-dn.net/?f=m%5E2e%5E%7Bmt%7D%2B10me%5E%7Bmt%7D%2B25e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%20%28m%5E2%2B10y%2B25%29e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%20m%5E2%2B10m%2B25%3D0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%5B%5Ctextup%7Bsince%20%7De%5E%7Bmt%7D%5Cneq0%5D%5C%5C%5C%5C%5CRightarrow%20m%5E2%2B2%5Ctimes%20m%5Ctimes5%2B5%5E2%3D0%5C%5C%5C%5C%5CRightarrow%20%28m%2B5%29%5E2%3D0%5C%5C%5C%5C%5CRightarrow%20m%3D-5%2C-5.)
So, the general solution of the given equation is

Differentiating with respect to t, we get

According to the given conditions, we have

and

Thus, the required solution is

What figure are we looking for?
Answer:
if you are evaluating this claim is false