IM SORRY I CANT HELP YOU ONE THIS ONE SORRY I HOPE THIS HELPS :)
Answer:
g(0.9) ≈ -2.6
g(1.1) ≈ 0.6
For 1.1 the estimation is a bit too high and for 0.9 it is too low.
Step-by-step explanation:
For values of x near 1 we can estimate g(x) with t(x) = g'(1) (x-1) + g(1). Note that g'(1) = 1²+15 = 16, and for values near one g'(x) is increasing because x² is increasing for positive values. This means that the tangent line t(x) will be above the graph of g, and the estimates we will make are a bit too big for values at the right of 1, like 1.1, and they will be too low for values at the left like 0.9.
For 0.9, we estimate
g(0.9) ≈ 16* (-0.1) -1 = -2.6
g(1.1) ≈ 16* 0.1 -1 = 0.6
We have to calculate the pizza´s area.
r=radius
Area (circle)=π*r²
diameter=30 cm
radius=diameter/2=30 cm/2=15 cm
Area(pizza)=π*(15 cm)²=225π cm²≈706.86 cm².
solution: 706.86 cm²
Answer:
linear
Step-by-step explanation:
use Desmos can help A LOT
Find where the equation is undefined ( when the denominator is equal to 0.
Since they say x = 5, replace x in the equation see which ones equal o:
5-5 = 0
So we know the denominator has to be (x-5), this now narrows it down to the first two answers.
To find the horizontal asymptote, we need to look at an equation for a rational function: R(x) = ax^n / bx^m, where n is the degree of the numerator and m is the degree of the denominator.
In the equations given neither the numerator or denominators have an exponent ( neither are raised to a power)
so the degrees would be equal.
Since they are equal the horizontal asymptote is the y-intercept, which is given as -2.
This makes the first choice the correct answer.