In this question, we have to find the complement and supplement of the given angles .
Complementary angles are those angles whose sum is 90 degree and supplementary angles are those angles whose sum is 180 degree.
So to find the complement and supplement angles, we need to subtract the given angles from pi/2 and pi respectively .
a.
![\frac{ \pi}{10} \\ complement \ angle = \frac{ \pi}{2} - \frac{ \pi}{10} \\ = \frac{4 \pi}{10} = \frac{ 2 \pi}{5} \\ Supplement \ angle = \pi - \frac{ \pi}{10} = \frac{9 \pi}{10}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%5Cpi%7D%7B10%7D%0A%5C%5C%0Acomplement%20%20%5C%20angle%20%3D%20%5Cfrac%7B%20%5Cpi%7D%7B2%7D%20-%20%5Cfrac%7B%20%5Cpi%7D%7B10%7D%20%20%20%20%20%5C%5C%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%20%5Cfrac%7B4%20%5Cpi%7D%7B10%7D%20%3D%20%5Cfrac%7B%202%20%5Cpi%7D%7B5%7D%0A%5C%5C%0ASupplement%20%20%5C%20angle%20%3D%20%5Cpi%20-%20%5Cfrac%7B%20%5Cpi%7D%7B10%7D%20%3D%20%5Cfrac%7B9%20%5Cpi%7D%7B10%7D)
b.
![\frac{9 \pi}{10} \\ Complement \ angle = \frac{ \pi}{2} - \frac{9 \pi}{10} = \frac{-4 \pi}{10} = -\frac{2 \pi}{5} \\ Supplement \ angle = \pi - \frac{9 \pi}{10} = \frac{ \pi}{10}](https://tex.z-dn.net/?f=%5Cfrac%7B9%20%5Cpi%7D%7B10%7D%0A%5C%5C%0AComplement%20%5C%20angle%20%3D%20%5Cfrac%7B%20%5Cpi%7D%7B2%7D%20-%20%5Cfrac%7B9%20%5Cpi%7D%7B10%7D%20%3D%20%5Cfrac%7B-4%20%5Cpi%7D%7B10%7D%20%3D%20-%5Cfrac%7B2%20%5Cpi%7D%7B5%7D%0A%5C%5C%0ASupplement%20%5C%20angle%20%3D%20%5Cpi%20-%20%5Cfrac%7B9%20%5Cpi%7D%7B10%7D%20%3D%20%5Cfrac%7B%20%5Cpi%7D%7B10%7D)
Here are the first three the last -I’m always scared to work with fractions lol
B. They are both proportionate, but dont have the same dimensions as one another
Step-by-step explanation:
it would be B