Answer:
the force between charged particles increases when they are in solid form
Do you have a screen shot or picture of the problem?
They have same electronic configuration
100.133 degree celsius is the boiling point of the solution formed when 15.2 grams of CaCl2 dissolves in 57.0 g of water.
Explanation:
Balanced eaquation for the reaction
CaCl2 + 2H20 ⇒ Ca(OH)2 + HCl
given:
mass of CaCl2 = 15.2 grams
mass of the solution = 57 grams
Kb (molal elevation constant) = 0.512 c/m
i = vont hoff factor is 1 as 1 mole of the substance is given as product.
Molality is calculated as:
molality = 
= 
= 0.26 M
Boiling point is calculated as:
ΔT = i x Kb x M
= 1 x 0.512 x 0.26
= 0.133 degrees
The boiling point of the solution will be:
100 degrees + 0.133 degrees (100 degrees is the boiling point of water)
= 100.133 degree celcius is the boiling point of mixture formed.
Alka-seltzer in an antacid that contains a mixture of sodium bicarbonate and citric acid. When the tablet is dissolved in water, the reactants which are in solid form in tablet become aqueous and react with each other.
During this reaction, Carbon Dioxide gas is evolved which causes the reaction mixture to fizz. The equation is given below.

Rate of the above reaction is affected by the Temperature.
As the temperature increases , the rate of the reaction increases. This happens because at higher temperature, the collisions between reacting species are more which result in formation of product in less time. This increases the rate of reaction.
We have been given equal volumes of water for each beaker. But the temperature of beaker c is 80°C which is the highest temperature. That means the reaction in beaker c is fastest.
Whereas beaker a is at lowest temperature (30°C) , therefore the reaction in beaker a would be slowest .
Therefore the answer that correctly orders the reaction rates from fastest to slowest reaction is beaker c > beaker b > beaker a