The theoretical yield of NaBr given that 2.36 moles of FeBr₃ reacts is 7.08 moles
<h3>Balanced equation </h3>
2FeBr₃ + 3Na₂S → Fе₂S₃ + 6NaBr
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
<h3>How to determine the theoretical yield of NaBr</h3>
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
Therefore,
2.36 moles FeBr₃ will react to produce = (2.36 × 6) / 2 = 7.08 moles of NaBr
Therefore,
Thus, the theoretical yield of NaBr is 7.08 moles
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1
Answer:
Turkish: Bir gaza dönüşecekler ve gaz, güveler ve güve larvaları için çok zehirlidir.
English:They will turn in to a gass and the gass is very toxic to moths and moth larvae.
The total atomic number must be the same on each side. The total mass number must be the same on both side.
<span>On the RHS, for the mass number, we have 257 + 4 = 261 (the 4 comes from the 4 neutrons). That means the mass number of the missing piece on the LHS is 261 - 247 = 14. </span>
<span>One the RHS, for the atomic number we have a total of 104 since the 4 neutrons are all neutral. On the LHS, we have this: 104 - 98 = 6. </span>
<span>The missing piece is a nucleus of carbon 14. Done in your style, it is 14/6C</span>
Answer:
1.33 × 10²⁴ molecules CO₂
General Formulas and Concepts:
<u>Chemistry - Stoichiometry</u>
- Reading a Periodic Table
- Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
97.3 g CO₂
<u>Step 2: Define conversions</u>
Avogadro's Number
Molar Mass of C - 12.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of CO₂ - 12.01 + 2(16.00) = 44.01 g/mol
<u>Step 3: Convert</u>
= 1.33138 × 10²⁴ molecules CO₂
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules.</em>
1.33138 × 10²⁴ molecules CO₂ ≈ 1.33 × 10²⁴ molecules CO₂