![bh + l(s_1 + s_2 + s_3)](https://tex.z-dn.net/?f=bh%20%2B%20l%28s_1%20%2B%20s_2%20%2B%20s_3%29)
b = base length (of triangle)
h = height of triangle
s = side length of triangle
l = length of rectangle
Answer:
3
Step-by-step explanation:
-2+1= -1
4-3=1
-3/1= -3
Answer:
a)
,
, b)
,
, c)
,
.
Step-by-step explanation:
The equation of the circle is:
![x^{2} + (y-1)^{2} = 16](https://tex.z-dn.net/?f=x%5E%7B2%7D%20%2B%20%28y-1%29%5E%7B2%7D%20%3D%2016)
After some algebraic and trigonometric handling:
![\frac{x^{2}}{16} + \frac{(y-1)^{2}}{16} = 1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%7D%7B16%7D%20%2B%20%5Cfrac%7B%28y-1%29%5E%7B2%7D%7D%7B16%7D%20%3D%201)
![\frac{x^{2}}{16} + \frac{(y-1)^{2}}{16} = \cos^{2} t + \sin^{2} t](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%7D%7B16%7D%20%2B%20%5Cfrac%7B%28y-1%29%5E%7B2%7D%7D%7B16%7D%20%3D%20%5Ccos%5E%7B2%7D%20t%20%2B%20%5Csin%5E%7B2%7D%20t)
Where:
![\frac{x}{4} = \cos t](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B4%7D%20%3D%20%5Ccos%20t)
![\frac{y-1}{4} = \sin t](https://tex.z-dn.net/?f=%5Cfrac%7By-1%7D%7B4%7D%20%3D%20%5Csin%20t)
Finally,
![x = 4\cdot \cos t](https://tex.z-dn.net/?f=x%20%3D%204%5Ccdot%20%5Ccos%20t)
![y = 1 + 4\cdot \sin t](https://tex.z-dn.net/?f=y%20%3D%201%20%2B%204%5Ccdot%20%5Csin%20t)
a)
,
.
b)
,
.
c)
, ![y = 1 + 4\cdot \sin t''](https://tex.z-dn.net/?f=y%20%3D%201%20%2B%204%5Ccdot%20%5Csin%20t%27%27)
Where:
![4\cdot \cos t' = 0](https://tex.z-dn.net/?f=4%5Ccdot%20%5Ccos%20t%27%20%3D%200)
![1 + 4\cdot \sin t' = 5](https://tex.z-dn.net/?f=1%20%2B%204%5Ccdot%20%5Csin%20t%27%20%3D%205)
The solution is ![t' = \frac{\pi}{2}](https://tex.z-dn.net/?f=t%27%20%3D%20%5Cfrac%7B%5Cpi%7D%7B2%7D)
The parametric equations are:
![x = 4\cdot \cos \left(t+\frac{\pi}{2} \right)](https://tex.z-dn.net/?f=x%20%3D%204%5Ccdot%20%5Ccos%20%5Cleft%28t%2B%5Cfrac%7B%5Cpi%7D%7B2%7D%20%20%5Cright%29)
![y = 1 + 4\cdot \sin \left(t + \frac{\pi}{2} \right)](https://tex.z-dn.net/?f=y%20%3D%201%20%2B%204%5Ccdot%20%5Csin%20%5Cleft%28t%20%2B%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%5Cright%29)
The answer is D because there is one of the 0 and one of the 9
Answer:
The gardeners should buy 45 white hydrangeas and 104 pink hydrangeas.
Step-by-step explanation:
Let the gardeners at Middleton Place Gardens have to buy x numbers of white hydrangeas and y number of pink hydrangeas.
So, x + y = 41 {Given} ........... (1)
Again, for another flower bed they want to plant 108 hydrangeas, where the number of white ones is 2 times that of Middleton Place Gardens and the number of pink ones is 3 times that of Middleton Place Gardens.
So, 2x + 3y = 108 ........ (2)
Now, solving equations (1) and (2) we get,
3y - 2y = 108 - 82 = 26
⇒ y = 26
And from equation (1) we get,
x = 41 - 26 = 15.
So, the total number of white hydrangeas the gardeners have to buy is (x + 2x) = 3x = 3 × 15 = 45.
And the total number of pink hydrangeas the gardeners have to buy is (y + 3y) = 4y = 4 × 26 = 104. (Answer)