We can plot this data on MS Excel and determine the distribution of these data reflected on the graph. Among these numbers, 50 is the outlier since it is very far from the other numbers ranging from 76 to 83. We can perform interquartile range to determine or verify the outliers in the data set. In this respect, we can see that there is not much distribution seen. The average of all data sets is equal to 96.25. When the outlier (50) is removed, we expect the mean to become higher since a low number was ommitted including high numbers only. Outliers are obtained from special causations such as human errors.
9514 1404 393
Answer:
$7.14
Step-by-step explanation:
Let p, d, q represent the numbers of pennies, dimes, and quarters in the collection, respectively.
p + d + q = 45 . . . . . . . . there are 45 coins in the collection
2p +5 = q . . . . . . . . . . . . 5 more than twice the number of pennies
p + 4 = d . . . . . . . . . . . . . 4 more than the number of pennies
Substituting the last two equations into the first gives ...
p +(p +4) +(2p +5) = 45
4p = 36 . . . . . . . . . . . . . subtract 9
p = 9 . . . . . . . . . . . divide by 4
d = 9 +4 = 13
q = 2(9) +5 = 23
The value of the collection is ...
23(0.25) +13(0.10) +9(0.01) = 5.75 +1.30 +0.09 = 7.14
The coin collection is worth $7.14.
Answer:
go right 5 from (0,0) then up 5 from (5,0)
Step-by-step explanation:
Answer:
this makes no sense but i already answered so ima say 1
Step-by-step explanation:
im so sorry