1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
3 years ago
12

What is the equation of the line containing the points (5,2), (10,4), and (15,6)?

Mathematics
2 answers:
rjkz [21]3 years ago
6 0
The y value goes up 5 ,& the x axis subtracts 2 and adds together I believe
Ivenika [448]3 years ago
5 0
    <span> First you have to find y=mx+b so to find m(slope) you use the equation
y2-y1/x2-x1 and choose any too coordinates. slope(rate of change)= 2/5. Now you plug in any coordinate and plug it in as x and y. (x,y) is how you know which number is x and y. And you should get a y-intercept or b = 0. This means the equation of the line is y= 2/5x.
</span>
You might be interested in
What kind of angle is this?
rewona [7]

Answer:

it is an obtuse angle ......

8 0
3 years ago
Read 2 more answers
150 calories and 30 grams how many calories are in 7 grams
exis [7]

Answer:

35 calories

Step-by-step explanation:

create a proportion and solve.

30/150= 7/x

7 0
3 years ago
PLEASE ANSWER ITS DUE SO SOON
geniusboy [140]

the line is negative because it goes down as you move right

slope = rise/run = 4/2 = 2

y = 2x+b

use a point on the line - I picked (-4, 3)

3 = 2(-4)+b

3 = -8+b

11 = b

<h2>y = 2x +11</h2>
8 0
3 years ago
Integrate the following problem:
vazorg [7]

Answer:

\displaystyle \frac{2 \cdot sin2x-cos2x}{5e^x} + C

Step-by-step explanation:

The integration by parts formula is: \displaystyle \int udv = uv - \int vdu

Let's find u, du, dv, and v for \displaystyle \int e^-^x \cdot cos2x \ dx .

  • u=e^-^x
  • du=-e^-^x dx
  • dv=cos2x \ dx
  • v= \frac{sin2x}{2}

Plug these values into the IBP formula:

  • \displaystyle \int e^-^x \cdot cos2x \ dx = e^-^x \cdot \frac{sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx
  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx

Now let's evaluate the integral \displaystyle \int \frac{sin2x}{2} \cdot -e^-^x dx.

Let's find u, du, dv, and v for this integral:

  • u=-e^-^x
  • du=e^-^x dx
  • dv=\frac{sin2x}{2} dx
  • v=\frac{-cos2x}{4}  

Plug these values into the IBP formula:

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} - \int \frac{-cos2x}{4}\cdot e^-^x dx

Factor 1/4 out of the integral and we are left with the exact same integral from the question.

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx

Let's substitute this back into the first IBP equation.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]  

Simplify inside the brackets.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ \frac{e^-^x \cdot cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]

Distribute the negative sign into the parentheses.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4} - \frac{1}{4} \int cos2x \cdot e^-^x dx

Add the like term to the left side.

  • \displaystyle \int e^-^x \cdot cos2x \ dx  + \frac{1}{4} \int cos2x \cdot e^-^x dx= \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  
  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  

Make the fractions have common denominators.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x}{4} -  \frac{e^-^x \cdot cos2x}{4}

Simplify this equation.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4}

Multiply the right side by the reciprocal of 5/4.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4} \cdot \frac{4}{5}

The 4's cancel out and we are left with:

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{5}

Factor e^-^x out of the numerator.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x(2 \cdot sin2x-cos2x)}{5}

Simplify this by using exponential properties.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x}

The final answer is \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x} + C.

7 0
3 years ago
Read 2 more answers
Which decimal is equivalent to -
lord [1]

Answer:

Do you have a picture of the question?

6 0
3 years ago
Other questions:
  • If it takes 15 machines 15 minutes to make 500 raviolis how long would it take 75 machines to make 6000 raviolis
    15·1 answer
  • How do I solve this math problem??
    7·1 answer
  • For the inequality below, write the set of numbers in interval notation.
    6·1 answer
  • 3 m equals how many mm
    11·2 answers
  • 3/4+2/4÷2×4+5÷5+6×4×6=
    9·2 answers
  • What is 85% written as a fraction? A) 17/20 B)1 3/17 C)0.85
    12·2 answers
  • The table represents a function. x -6,7,4,3,-5. y 8,3,-5,-2,12. Which value is an output of the function?
    5·2 answers
  • Reggie wants to save $86.10. He plans to save $10.25 each month.
    8·2 answers
  • 15 points for answer and brainliest answer for correct answer. Question up above
    11·2 answers
  • A charm bracelet costs $65, plus $25 for each charm. The equation -25x+y=65 represents the cost y (in dollars) of the bracelet,
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!