Answer:
Proteins.
Explanation:
If the mRNA is damaged, it directly interferes with the ability of producing proteins in animal cell because mRNA is responsible for carrying the protein blueprint from a cell's DNA to its ribosomes which are considered as the machines of the cell that produces proteins for the cell. These messenger RNA has the information about what type of proteins are required to produced for the cell. So if mRNA is damaged, the ribosomes are unable to produce proteins for the cell.
Umm...
biology is the study of life
is this the answer you're looking for?
Answer:
Cancer cells ignore these cells and invade nearby tissues. Benign (non-cancerous) tumors have a fibrous capsule. They may push up against nearby tissues but they do not invade/intermingle with other tissues. Cancer cells, in contrast, don't respect boundaries and invade tissues.
Cancer cells differ from normal cells in many ways that allow them to grow out of control and become invasive. One important difference is that cancer cells are less specialized than normal cells. That is, whereas normal cells mature into very distinct cell types with specific functions, cancer cells do not
They both eat, predators eat prey, and prey eat plants.
Answer:
(a) Frequency of M = 0.64
Frequency of N = 0.04
Frequency of MN= 0.32
(b) Expected frequencies of M = 0.648
Expected frequencies of MN = 0.304
Expected frequencies of N = 0.048
Explanation:
(a) If random mating takes place in the population, then the expected frequencies are
f(L(M)) = p = 0.8
F(L(N)) = q
q= 1 - p
= 1 - 0.8
= 0.2
Frequency of M = p^2 = ( 0.8)^2 = 0.64
Frequency of N = q^2 = (1-p)^2 = (1 - 0.8)^2 = (0.2)^2 = 0.04
Frequency of MN = 2pq = 2 * 0.8 * 0.2 = 0.32
(b)
F = inbreeding coefficient = 0.05
f(L(M)L(M)) = p^2 + Fpq = (0.8)^2 + 0.05 * 0.8 * 0.2 = 0.648
f(L(M)L(N)) = 2 pq - 2Fpq = 2 * 0.8 * 0.2 - ( 2 * 0.05 * 0.8 * 0.2) = 0.304
f(L(N)L(N)) = q^2 + Fpq = (0.2)^2 + ( 0.05 * 0.8 * 0.2) = 0.048