9514 1404 393
Answer:
18
Step-by-step explanation:
Solve the first for a, then substitute into the second.
a = 27/(5b^2)
Then ...
(27/(5b^2))^2·b = 135
27^2/(5^2·135) = b^3 = 27/125
b = ∛(27/125) = 3/5
a = 27/(5(3/5)^2) = 15
__
The expression of interest is ...
a +5b = 15 + 5(3/5) = 15 +3
a +5b = 18
You should suck a long rod and the answer is around 50 minutes
Answer:
1. x = -1.5y
2. 5 (2x-3)
3. p = 4
Step-by-step explanation:
1) Simplifying
7x + 2y + -3x + 4y = 0
Reorder the terms:
7x + -3x + 2y + 4y = 0
Combine like terms: 7x + -3x = 4x
4x + 2y + 4y = 0
Combine like terms: 2y + 4y = 6y
4x + 6y = 0
Solving
4x + 6y = 0
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-6y' to each side of the equation.
4x + 6y + -6y = 0 + -6y
Combine like terms: 6y + -6y = 0
4x + 0 = 0 + -6y
4x = 0 + -6y
Remove the zero:
4x = -6y
Divide each side by '4'.
x = -1.5y
Simplifying
x = -1.5y
2)
Common factor
10x - 15
5 (2x-3)
3) Simplifying
5p = 3p + 8
Reorder the terms:
5p = 8 + 3p
Solving
5p = 8 + 3p
Solving for variable 'p'.
Move all terms containing p to the left, all other terms to the right.
Add '-3p' to each side of the equation.
5p + -3p = 8 + 3p + -3p
Combine like terms: 5p + -3p = 2p
2p = 8 + 3p + -3p
Combine like terms: 3p + -3p = 0
2p = 8 + 0
2p = 8
Divide each side by '2'.
p = 4
Simplifying
p = 4
<u>Answer:</u>
<u>Answer:a. Since 20° is in the first quadrant, the reference angle is 20° .</u>
<u>Answer:a. Since 20° is in the first quadrant, the reference angle is 20° .b. Reference Angle: the acute angle between the terminal arm/terminal side and the x-axis. The reference angle is always positive. In other words, the reference angle is an angle being sandwiched by the terminal side and the x-axis. It must be less than 90 degree, and always positive.</u>
<u>Answer:a. Since 20° is in the first quadrant, the reference angle is 20° .b. Reference Angle: the acute angle between the terminal arm/terminal side and the x-axis. The reference angle is always positive. In other words, the reference angle is an angle being sandwiched by the terminal side and the x-axis. It must be less than 90 degree, and always positive.c. The rays corresponding to supplementary angles intersect the unit circles in points having the same y-coordinate, so the two angles have the same sine (and opposite cosines).</u>
<em>h</em><em>o</em><em>p</em><em>e</em><em>f</em><em>u</em><em>l</em><em>l</em><em>y</em><em>,</em>
<em>Z</em><em>a</em><em>r</em><em>a</em><em>♡</em>