Answer:A improve farming techniques to reduce greenhouse gases.
Explanation:
Answer:
Hershey and Chase experiment confirms that DNA is the genetic material of the living organism, not the RNA or protein. They also got a noble prize for this discovery.
Hershey and Chase use the radioactive sulfur to label the proteins and distinguish them from the DNA because DNA do not contain sulfur. The radioactive label phosphorus was used to label the DNA as phosphorus is specific to DNA as they wants to know exactly the genetic material. They do not use the radioactive carbon and nitrogen because both carbon and nitrogen are present in DNA and RNA. This labeling may produce confused result as it label both DNA as well as protein. The result o radioactive phosphorus and sulfur determines that DNA is the genetic material of the organism.
Explanation:
I'll try to help what is the question
Answer: The bacteria transformed with this particular plasmid will form white colonies on the plates containing ampicillin and Xgal.
Explanation: The lacZ gene produces an enzyme called β-galactosidase which is responsible for the breakdown of lactose into glucose and galactose. The lacZ gene is one of the three genes (the other two being lacA and lacY) of the lac operon which is responsible for the transport and mechanism of lactose in E. coli and many other bacteria.
In recombinant DNA technology, when a plasmid is to be used to transform a host cell, such markers are used to help screen the transformed cells from the ones that have not taken up the plasmid. Xgal present in the plates is an artificial substrate which is hydrolyzed by
β-galactosidase into 5-bromo-4-chloro-indoxyl which will dimerize and oxidise into 5,5'-dibromo-4,4'dichloro-indigo. This is a blue pigment which will give blue color to the bacterial cells. Introducing a DNA fragment in this lacZ gene will make it non-functional so it will not be able to produce the enzyme.
Therefore, when a bacterial cell is transformed with a plasmid containing ampicillin resistance gene and a DNA fragment introduced in the lacZ gene and then grown on plates containing ampicillin and Xgal, white colored colonies will appear. The white colonies will show the bacterial cells that have successfully taken up the plasmid with the DNA fragment incorporated in the lacZ gene as this will render the gene non-functional and will not produce β-galactosidase which will breakdown Xgal to give blue colonies. Since the plates contain ampicillin, only the bacterial cells that have been successfully transformed with the plasmid ( the ones that have the DNA fragment and the ones without it) will grow as the ampicillin resistance will give them resistance against ampicillin in the plates. The bacterial cells that have not taken up the plasmid will not be resistant to ampicillin and will not form colonies on the plate.
This is called blue-white screening which is used to identify successfully transformed host cells. A picture of this is given in the attachment, taken from the following website:
https://www.mun.ca/biology/scarr/Blue_&_White_Colonies.html