You can use refraction which is the bending of light through a transparent material. Also the freezing and boiling points of water. One last one is the Cartesian five experiment, this shows the density of water. Hope this helped.
The density of a population of living organisms is usually measured in individuals on one square km. In here we have 50 earthworms on an area of 5 square meters, thus we have 10 earthworms on every square meter. In order to get to the result we need to see first how many square meters there are in one square km. One square km has one thousand meters of length and one thousand meters of width so:
1,000 x 1,000 = 1,000,000 km²
Since we established that we have 10 earthworms on every one square meter, we just need to multiply the number of square meters with the amount of earthworms on every square meter:
1,000,000 x 10 = 10,000,000
So we have a density of 10 million earthworms per square km.
I would say False? Because the lunar craters are made because of astroids crashing on the moon
Pyroclastic materials are classified according to their size, measured in milli meters: dust (less than 0.6 mm [0.02 inch]), ash (fragments between 0.6 and 2 mm [0.02 to 0.08 inch]), cinders (fragments between 2 and 64 mm [0.08 and 2.5 inches], also known as lapilli), blocks (angular fragments greater than 64 mm), and bombs (rounded fragments greater than 64 mm).
The fluid nature of a pyroclastic flow is maintained by the turbulence of its internal gases. Both the incandescent pyroclastic particles and the rolling clouds of dust that rise above them actively liberate more gas. The expansion of these gases accounts for the nearly frictionless character of the flow as well as its great mobility and destructive power.
Pyroclastic flow, in a volcanic eruption, a fluidized mixture of hot rock fragments, hot gases, and entrapped air that moves at high speed in thick, gray-to-black, turbulent clouds that hug the ground. The temperature of the volcanic gases can reach about 600 to 700 °C (1,100 to 1,300 °F). The velocity of a flow often exceeds 100 km (60 miles) per hour and may attain speeds as great as 160 km (100 miles) per hour.
To learn more about Pyroclastic materials here
brainly.com/question/16582896
#SPJ4
Hey if I help you have to help me