1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dolphi86 [110]
3 years ago
6

The front of an a-frame house is in the shape of a triangle.The height of the house is 20 feet.The area of the front of the a-fr

ame is 600 square feet.Write and solve an equation to find the base of the A-frame house
Mathematics
1 answer:
FinnZ [79.3K]3 years ago
4 0
So, you have a triangular a-frame. The height is 20 feet, and the area is 600 square feet. The area of a triangle is represented by this equation:

\frac{1}{2} *b*h

Where:
- b is the base length
- h is the height

So, basically just plug things in:

You might be interested in
Rebecca bought candy boxes in the shape of a square pyramid to use for party favors. The side length of each box is 3.6 inches,
a_sh-v [17]

Answer:

yes she will

Step-by-step explanation:

im not very sure if it is correct, and if its wrong then im sorry

4 0
3 years ago
Read 2 more answers
The triangles are similar by:
igomit [66]
The triangles are similar by the SSS (side-side-side) similarity theorem because the sides of the two triangles are in proportion (5/15 = 3/9 = 4/12)

Hope this helps =)
5 0
3 years ago
Read 2 more answers
--/: Lesson Quiz<br> Why is subtracting an expression similar to distributing a -1?
o-na [289]

Answer:

You increase each term inside the parentheses by -1 in order to subtract each term, since the subtraction is the additive inverse

3 0
3 years ago
Find a solution of x dy dx = y2 − y that passes through the indicated points. (a) (0, 1) y = (b) (0, 0) y = (c) 1 6 , 1 6 y = (d
Leni [432]
Answers: 

(a) y = \frac{1}{1 - Cx}, for any constant C

(b) Solution does not exist

(c) y = \frac{256}{256 - 15x}

(d) y = \frac{64}{64 - 15x}

Explanations:

(a) To solve the differential equation in the problem, we need to manipulate the equation such that the expression that involves y is on the left side of the equation and the expression that involves x is on the right side equation.

Note that

 x\frac{dy}{dx} = y^2 - y&#10;\\&#10;\\ \indent xdy = \left ( y^2 - y \right )dx&#10;\\&#10;\\ \indent \frac{dy}{y^2 - y} = \frac{dx}{x}&#10;\\&#10;\\ \indent \int {\frac{dy}{y^2 - y}} = \int {\frac{dx}{x}} &#10;\\&#10;\\ \indent \boxed{\int {\frac{dy}{y^2 - y}} = \ln x + C_1}      (1)

Now, we need to evaluate the indefinite integral on the left side of equation (1). Note that the denominator y² - y = y(y - 1). So, the denominator can be written as product of two polynomials. In this case, we can solve the indefinite integral using partial fractions.

Using partial fractions:

\frac{1}{y^2 - y} = \frac{1}{y(y - 1)} = \frac{A}{y - 1} + \frac{B}{y}&#10;\\&#10;\\ \indent \Rightarrow \frac{1}{y^2 - y} = \frac{Ay + B(y-1)}{y(y - 1)} &#10;\\&#10;\\ \indent \Rightarrow \boxed{\frac{1}{y^2 - y} = \frac{(A+B)y - B}{y^2 - y} }      (2)

Since equation (2) has the same denominator, the numerator has to be equal. So,

1 = (A+B)y - B&#10;\\&#10;\\ \indent \Rightarrow (A+B)y - B = 0y + 1&#10;\\&#10;\\ \indent \Rightarrow \begin{cases}&#10; A + B = 0&#10;& \text{(3)}\\-B = 1&#10; & \text{(4)}   \end{cases}

Based on equation (4), B = -1. By replacing this value to equation (3), we have

A + B = 0
A + (-1) = 0
A + (-1) + 1 = 0 + 1
A = 1 

Hence, 

\frac{1}{y^2 - y} = \frac{1}{y - 1} - \frac{1}{y}

So,

\int {\frac{dy}{y^2 - y}} = \int {\frac{dy}{y - 1}} - \int {\frac{dy}{y}} &#10;\\&#10;\\ \indent \indent \indent \indent = \ln (y-1) - \ln y&#10;\\&#10;\\ \indent  \boxed{\int {\frac{dy}{y^2 - y}} = \ln \left ( \frac{y-1}{y} \right ) + C_2}

Now, equation (1) becomes

\ln \left ( \frac{y-1}{y} \right ) + C_2 = \ln x + C_1&#10;\\&#10;\\ \indent \ln \left ( \frac{y-1}{y} \right ) = \ln x + C_1 - C_2&#10;\\&#10;\\ \indent  \frac{y-1}{y} = e^{C_1 - C_2}x&#10;\\&#10;\\ \indent  \frac{y-1}{y} = Cx, \text{ where } C = e^{C_1 - C_2}&#10;\\&#10;\\ \indent  1 - \frac{1}{y} = Cx&#10;\\&#10;\\ \indent \frac{1}{y} = 1 - Cx&#10;\\&#10;\\ \indent \boxed{y = \frac{1}{1 - Cx}}&#10;       (5)

At point (0, 1), x = 0, y = 1. Replacing these values in (5), we have

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent 1 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1&#10;&#10;

Hence, for any constant C, the following solution will pass thru (0, 1):

\boxed{y = \frac{1}{1 - Cx}}

(b) Using equation (5) in problem (a),

y = \frac{1}{1 - Cx}   (6)

for any constant C.

Note that equation (6) is called the general solution. So, we just replace values of x and y in the equation and solve for constant C.

At point (0,0), x = 0, y =0. Then, we replace these values in equation (6) so that 

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent 0 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1

Note that 0 = 1 is false. Hence, for any constant C, the solution that passes thru (0,0) does not exist.

(c) We use equation (6) in problem (b) and because equation (6) is the general solution, we just need to plug in the value of x and y to the equation and solve for constant C. 

At point (16, 16), x = 16, y = 16 and by replacing these values to the general solution, we have

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent 16 = \frac{1}{1 - C(16)} &#10;\\ &#10;\\ \indent 16 = \frac{1}{1 - 16C}&#10;\\&#10;\\ \indent 16(1 - 16C) = 1&#10;\\ \indent 16 - 256C = 1&#10;\\ \indent - 256C = -15&#10;\\ \indent \boxed{C = \frac{15}{256}}&#10;&#10;&#10;

By replacing this value of C, the general solution becomes

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent y = \frac{1}{1 - \frac{15}{256}x} &#10;\\ &#10;\\ \indent y = \frac{1}{\frac{256 - 15x}{256}}&#10;\\&#10;\\&#10;\\ \indent \boxed{y = \frac{256}{256 - 15x}}&#10;&#10;&#10;&#10;

This solution passes thru (16,16).

(d) We do the following steps that we did in problem (c):
        - Substitute the values of x and y to the general solution.
        - Solve for constant C

At point (4, 16), x = 4, y = 16. First, we replace x and y using these values so that 

y = \frac{1}{1 - Cx} &#10;\\ &#10;\\ \indent 16 = \frac{1}{1 - C(4)} &#10;\\ &#10;\\ \indent 16 = \frac{1}{1 - 4C} &#10;\\ &#10;\\ \indent 16(1 - 4C) = 1 &#10;\\ \indent 16 - 64C = 1 &#10;\\ \indent - 64C = -15 &#10;\\ \indent \boxed{C = \frac{15}{64}}

Now, we replace C using the derived value in the general solution. Then,

y = \frac{1}{1 - Cx} \\ \\ \indent y = \frac{1}{1 - \frac{15}{64}x} \\ \\ \indent y = \frac{1}{\frac{64 - 15x}{64}} \\ \\ \\ \indent \boxed{y = \frac{64}{64 - 15x}}
5 0
3 years ago
11) the difference of 18 and r
scZoUnD [109]

Answer:

18-r

Difference is subtraction.

4 0
3 years ago
Read 2 more answers
Other questions:
  • I don't understand this.​
    11·2 answers
  • Which of the following equations is of a parabola with a vertex at (0, -5)?
    10·1 answer
  • Dan and Dawn purchased a house for $69,500. They had to make a down
    15·1 answer
  • What is the slope of the line that passes through points (-1,5) and (2,-3)
    9·1 answer
  • Which is a factor pair of 72 ?<br> A. 12, 6<br> B. 14, 5<br> C. 23, 4<br> D. 24, 2
    6·2 answers
  • Someone plz help me T^T
    12·1 answer
  • Solve:<br> 4(-6) =<br> -9(5) =<br> -1.5(-7) =
    6·1 answer
  • Tell whether (12, 43) is a solution of y = 3x + 7.<br> yes<br> no
    12·1 answer
  • The circumference of a hula hoop is 86\pi \text{ cm}86π cm86, pi, start text, space, c, m, end text.
    5·1 answer
  • 1/ab + a^2/b^2 <br> find the sum?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!