Molar mass CH4 = 16.0 g/mol
* number of moles:
932.3 / 16 => 58.26875 moles
T = 136.2 K
V = 0.560 L
P = ?
R = 0.082
Use the clapeyron equation:
P x V = n x R x T
P x 0.560 = 58.26875 x 0.082 x 136.2
P x 0.560 = 650.76
P = 650.76 / 0.560
P = 1162.07 atm
Salt makes the freezing point of water decrease, so it would freeze at a warmer temperature than regular water
Answer:
0.0177 L of nitrogen will be produced
Explanation:
The decomposition reaction of sodium azide will be:

As per the balanced equation two moles of sodium azide will give three moles of nitrogen gas
The molecular weight of sodium azide = 65 g/mol
The mass of sodium azide used = 100 g
The moles of sodium azide used = 
so 1.54 moles of sodium azide will give =
mol
the volume will be calculated using ideal gas equation
PV=nRT
Where
P = Pressure = 1.00 atm
V = ?
n = moles = 2.31 mol
R = 0.0821 L atm / mol K
T = 25 °C = 298.15 K
Volume = 