Answer:
A) 4.3 × 10²⁴ atoms
Explanation:
Step 1: Given data
Moles of neon: 7.2 moles
Step 2: Calculate the number of atoms present in 7.2 moles of neon
In order to convert moles to toms, we need a conversion factor. In this case, we will use Avogadro's number: there are 6.02 × 10²³ neon atoms in 1 mole of neon atoms.
7.2 mol × 6.02 × 10²³ atoms/mol = 4.3 × 10²⁴ atoms
It depends on the concentration of ions which are responsible for the electrical conductivity in aqueous solutions.
Answer:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
Explanation:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol can be calculated using the following equation:
<u>Where:</u>
<em>μ (l): is the chemical potential of 2-propanol in solution </em>
<em>μ° (l): is the chemical potential of pure 2-propanol </em>
<em>R: is the gas constant = 8.314 J K⁻¹ mol⁻¹ </em>
<em>T: is the temperature = 82.3 °C = 355.3 K </em>
<em>x: is the mole fraction of 2-propanol = 0.41 </em>

Therefore, the chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
I hope it helps you!
Answer:
Atomic Mass
Explanation:
it is also sometimes below the symbol of the element :)