I will explain you and pair two of the equations as an example to you. Then, you must pair the others.
1) Two circles are concentric if they have the same center and different radii.
2) The equation of a circle with center xc, yc, and radius r is:
(x - xc)^2 + (y - yc)^2 = r^2.
So, if you have that equation you can inmediately tell the coordinates of the center and the radius of the circle.
3) You can transform the equations given in your picture to the form (x -xc)^2 + (y -yc)^2 = r2 by completing squares.
Example:
Equation: 3x^2 + 3y^2 + 12x - 6y - 21 = 0
rearrange: 3x^2 + 12x + 3y^2 - 6y = 21
extract common factor 3: 3 (x^2 + 4x) + 3(y^2 -2y) = 3*7
=> (x^2 + 4x) + (y^2 - 2y) = 7
complete squares: (x + 2)^2 - 4 + (y - 1)^2 - 1 = 7
=> (x + 2)^2 + (y - 1)^2 = 12 => center = (-2,1), r = √12.
equation: 4x^2 + 4y^2 + 16x - 8y - 308 = 0
rearrange: 4x^2 + 16x + 4y^2 - 8y = 308
common factor 4: 4 (x^2 + 4x) + 4(y^2 -8y) = 4*77
=> (x^2 + 4x) + (y^2 - 2y) = 77
complete squares: (x + 2)^2 - 4 + (y - 1)^2 - 1 = 77
=> (x + 2)^2 + (y - 1)^2 = 82 => center = (-2,1), r = √82
Therefore, you conclude that these two circumferences have the same center and differet r, so they are concentric.
Answer:
No. The data in this study were not based on a random method. This is a key requirement for an inference to be made from the two-sample t-test.
Step-by-step explanation:
1. Hayden can use the two-sample t-test (also known as the independent samples t-test)to find out if there was a difference in the time spent in the checkout time between two grocery stores and to conclude whether the difference in the average checkout time between the two stores is really significant or if the difference is due to a random chance. There are three conditions to be met when using the two-sample t-test.
2. The first condition is that the sampling method must be random. This requirement was not met in this study. Each customer from each store should have an equal chance of being selected for the study. This was not achieved.
3. The distributions of the sample data are approximately normal. This is achieved with a large sample size of 30 customers selected for each study.
4. The last but not the least condition is the independence of the sample data. Sample data here is independent for both samples.
Answer:
Step-by-step explanation:
Vertex form is accomplished by completing the square on the quadratic. Do this by first setting the parabola equal to 0 then moving the constant over to the other side:

Now take half the linear term, square it, and add it to both sides. Our linear term is 6. Half of 6 is 3, and 3 squared is 9:

The reason we do this is to create a perfect square binomial on the left:
(obviously the 0 results from the addition of 9 and -9). Move the 0 back over to the other side and set the quadratic back equal to y:

This gives you a vertex of (-3, 0), which is a minimum value, since the parabola opens upwards.