Answer:
a.



b.

Step-by-step explanation:
Given that:
C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)
a. Find a piecewise smooth parametrization of the path C.
r(t) = { 0
If C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1),
Then:

Also:






b Evaluate
:
Integral of (x+2y^1/2)ds














![\mathtt{\int \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [(0)-(1)]}](https://tex.z-dn.net/?f=%5Cmathtt%7B%5Cint%20%20%5Climits%20_%7Bc3%7D%20%28x%2B%202%20%5Csqrt%7By%7D%29%20ds%20%3D%20-%5Cdfrac%7B4%7D%7B3%7D%20%5B%280%29-%281%29%5D%7D)
![\mathtt{\int \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [-(1)]}](https://tex.z-dn.net/?f=%5Cmathtt%7B%5Cint%20%20%5Climits%20_%7Bc3%7D%20%28x%2B%202%20%5Csqrt%7By%7D%29%20ds%20%3D%20-%5Cdfrac%7B4%7D%7B3%7D%20%5B-%281%29%5D%7D)




Answer: The answer is False
Step-by-step explanation:
I just took it
Answer:
Step-by-step explanation:
Given:
E is the midpoint of segment AC.
AE ≅ EC
∠BAE ≅ ∠ECD
To prove:
ΔAEB ≅ ΔCED
Statements Reasons
1). AE ≅ EC 1). Given
2). ∠BAE ≅ ∠ECD 2). Given
3). ∠AEB ≅ ∠CED 3). Vertically opposite angles theorem
4). ΔAEB ≅ ΔCED 4). By ASA postulate of congruence