<span>A) x = 41t
The classic equation for distance is velocity multiplied by time. And unfortunately, all of your available options have the form of that equation. In fact, the only difference between any of the equations is what looks to be velocity. And in order to solve the problem initially, you need to divide the velocity vector into a vertical velocity vector and a horizontal velocity vector. And the horizontal velocity vector is simply the cosine of the angle multiplied by the total velocity. So
H = 120*cos(70) = 120*0.34202 = 41.04242
So the horizontal velocity is about 41 m/s. Looking at the available options, only "A" even comes close.</span>
Answer:
225 rpm
Explanation:
The angular acceleration of the fan is given by:

where
is the final angular speed
is the initial angular speed
is the time interval
For the fan in this problem,

Substituting,

Now we can find the angular speed of the fan at the end of the 5th second, so after t = 5 s. It is given by:

where

Substituting,

A. Using the third equation of motion:
v2 = u2 + 2as
from the question;
the jet was initially at rest
hence u = 0
a = 1.75m/s2
s = 1500m
v2 = 02 + 2(1.75)(1500)
v2 = 5250
v = √5250
v = 72.46m/s
hence it moves with a velocity of 72.46m/s.
b. s = ut + 1/2at2
1500 = 0(t) + 1/2(1.75)t2
1500 × 2 = 2× 1/2(1.75)t2
3000 = 1.75t2
1714.29 = t2
41.4 = t
hence the time taken for the plane to down the runway is 41.4s.
Read more on Brainly.com -
brainly.com/question/18743384#readmore
To convert 2030 rad into rev, divide 2030 by 2pie. So final answer will be
2030/2 pie =323.08 revolutions.
Answer:
A maximum
Explanation:
When displacement is maximum, velocity is Zero and vice versa
When displacement is maximum, acceleration is maximum and when it is zero, acc. Is zero