Answer:
298,220 N
Explanation:
Let the force on car three is T_23-T_34
Since net force= ma
from newton's second law we have
T_23-T_34 = ma
therefore,
T_23-T_34 = 37000×0.62
T_23= 22940+T_34
now, we need to calculate
T_34
Notice that T_34 is accelerating all 12 cars behind 3rd car by at a rate of 0.62 m/s^2
F= ma
So, F= 12×37000×0.62= 22940×12= 275280 N
T_23 =22940+T_34= 22940+ 275280= 298,220 N
therefore, the tension in the coupling between the second and third cars
= 298,220 N
Answer:
Other ball's velocity is 10 m/s
Explanation:
We can use conservation of momentum:

Answer:8540 kg-g/s
Explanation:
Given
mass of blue car 
velocity of blue car 
mass of the truck 
speed of truck 
After collision they stick and lock together
Let v be the velocity of combined system at angle \theta from vertical
Conserving momentum in east direction

------1
Conserving Momentum in Y direction

-------2
squaring and then adding 1 & 2 we get

v=10.95 m/s
initial momentum of car
Answer:
Magnetic field strength required for this is 0.25 T
Explanation:
As we know that the proton moves in circular path in uniform magnetic field
so the radius of the path of the circle is given as

here we know that




now we have

so we have

For the same reason that you can skate around a curve at constant speed but not with constant velocity.
The DIRECTION you're going is part of your velocity, but it's not part of your speed.
If the DIRECTION changes, that's a change of velocity.
The object doesn't have to change speed to have a different velocity. A change of direction is enough to do it.
And any change of velocity is called acceleration.