1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
5

Corrine wants to purchase 9.6 pounds of trail mix. Each pound costs $1.20. How much will Corrine spend on trail mix?

Mathematics
2 answers:
Grace [21]3 years ago
7 0

Multiply 9.6 pounds of trail mix by $1.20.

9.6 * 1.20 = 11.52

Corrine will spend $11.52 on trail mix.

FinnZ [79.3K]3 years ago
4 0
11.52 dollars because 9.2 time 1.2 equals 11.52
You might be interested in
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
Overview
Alisiya [41]

Answer:

125.4

Step-by-step explanation:

Given

Number = 125.3546

Required

Round to 1 decimal place

Up till the first decimal place, the number is:

Number = 125.3

The digit after .3 is 5

The conditions for approximation are:

  • If n > 4, approximate to 1
  • Else: approximate to 0

In this case: 5 > 4, so we approximate to 1

Add this "1" to the last digit of 125.3. This becomes 125.4

<em>Hence: when the number is approximated to 1 decimal place, the digit is 125.4</em>

7 0
3 years ago
W is the midpoint of VX and Z is the midpoint of VY . If XY=p and WZ=p–30, what is WZ?
juin [17]

\large{ \tt{❃ \: EXPLANATION}} :

  • You'll have to know : Mid-point theorem states that A straight line segment joining the mid-points of any two triangle is parallel to the third side and it is equal to half of the length of the third side.

  • We're provided : XY = p , WZ = p - 30 & we're asked to find out the value of WZ. For that , firstly we have to find out the value of p.

\large{ \tt{❁ \: LET'S \: START }: }

  • Set up an equation & solve for p :

\large{ \bf{☄ \: p  - 30 =  \frac{1}{2}  p }}

\large{ \tt{↦ \frac{1}{2} p = p - 30}}

\large{ \tt{↦ \frac{1}{2} p - p =  - 30}}

\large{ \tt{↦ \frac{p - 2p}{2} =  - 30 }}

\large{ \tt{↦p - 2p =  - 60}}

\large{ \tt{ ↦ \: - p =  - 60}}

\large{ \tt{↦p = 60}}

  • The value of p is 60

\large{ \tt{❇ \: REPLACING \: VALUE}} :

\large{ \tt{↬ \: wz = p - 30 =  60 - 30 =   \boxed{\boxed{ \tt{30 }} }✔}}

  • Hence , WZ = 30 .

♪ Success is not a magic or miracle , it's not a luck , it's full of late night hard work , compromises & sacrifices.

♡ Hope I helped ! ツ

☼ Have a wonderful day / night ! ☃

# StayInAndExplore ! ☂

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

7 0
3 years ago
Explain one relationship between capacity and fluid ounces
vagabundo [1.1K]
Capacity is the maximum amount that something can contain
fluid ounces is how much something contains in ounces.
6 0
3 years ago
Darla decides to buy books and magazines with her money. Books cost $16 each and magazines cost $8 each. Write a function that s
Veronika [31]

Answer:

m=16x+8y

Step-by-step explanation:

let the amount of money she spend be 'm'

m=16x+8y

7 0
3 years ago
Read 2 more answers
Other questions:
  • PLEASE MATH HELP WILL GIVE BRAINLIEST!!
    11·1 answer
  • The density of pure solid copper is 8.94 g/mL. What volume does 5 kg of copper occupy. Please help
    10·1 answer
  • If 5 ib of pasta salad serves 14 people how much pasta salad should you bring to a picnic with 49 people
    8·1 answer
  • Which equation shows a valid step in solving:
    8·2 answers
  • What is this problem ?
    7·1 answer
  • What is 88+8698? Multiplied by 56
    9·2 answers
  • The sum of three prime numbers is 22. What is the largest possible product of these numbers?
    5·1 answer
  • Christian had $80.45 in his bank account on Monday.He deposited $20.50 on Tuesday.He then withdrew 37.25 on Wednesday.How much d
    10·2 answers
  • Plz guys I need help
    12·1 answer
  • I need your help on this
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!