The correct option is A.
To calculate the binding energy, you have to find the mass defect first.
Mass defect = [mass of proton and neutron] - Mass of the nucleus
The molar mass of thorium that we are given in the question is 234, the atomic number of thorium is 90, that means the number of neutrons in thorium is
234 - 90 = 144.
The of proton in thourium is 90, same as the atomic number.
Mass defect = {[90 * 1.00728] +[144* 1.00867]} - 234
Note that each proton has a mass of 1.00728 amu and each neutron has the mass of 1.00867 amu.
Mass defect = [90.6552 + 145.24848] - 234 = 1.90368 amu.
Note that the unit of the mass is in amu, it has to be converted to kg
To calculate the mass in kg
Mass [kg] = 1.90368 * [1kg/6.02214 * 10^-26 = 3.161135 * 10^-27
To calculate the binding energy
E = MC^2
C = Speed of light constant = 2.9979245 *10^8 m/s2
E = [3.161135 * 10^-27] * [2.9979245 *10^8]^2
E = 2.84108682069 * 10^-10.
Note that we arrive at this answer because of the number of significant figures that we used.
So, from the option given, Option A is the nearest to the calculated value and is our answer for this problem.
Answer:
0.302 moles
Explanation:
Data given
Mass of Pb(NO₃)₂ = 100 g
Moles of Pb(NO₃)₂ = ?
Solution:
To find mole we have to know about molar mass of Pb(NO₃)₂
So,
Molar mass of Pb(NO₃)₂ = 207 + 2[14 + 3(16)]
= 207 + 2[14 + 48]
= 207 + 124
Molar mass of Pb(NO₃)₂ = 331 g/mol
Formula used :
no. of moles = mass in grams / molar mass
Put values in above formula
no. of moles = 100 g / 331 g/mol
no. of moles = 0.302 moles
no. of moles of Pb(NO₃)₂ = 0.302 moles
The volume increases when the balloon temperature increases.
<u>Explanation:</u>
-10 F is converted into Kelvin as 249 K.
0°C is nothing but 0+ 273 = 273 K
And the room temperature is 25°C which is converted into Kelvin as 273 + 25 = 298 K.
249 K is below room temperature.
As per the Charles' law volume and temperature are directly proportional to each other, when the pressure of the gas remains constant.
V ∝ T
As the balloon temperature increases, the volume also increases.
The answer for the following questions is explained below.
Explanation:
The two variables that affect kinetic energy are:
- mass and
- velocity
- velocity - The faster an object moves,the more the kinetic energy it has.
- mass - Kinetic energy increases as mass increases
The kinetic energy of an object depends on both its mass and its velocity
Kinetic energy increases as mass increases
For example,think about rolling a bowling ball and a golf ball down a bowling lane at same velocity
Here,the bowling ball has more mass than the golf ball
Therefore you use more energy to roll the bowling ball than to roll the golf ball
The bowling ball is more likely to knock down the pins because it has more kinetic energy than the golf ball
<span>pm stands for picometer and picometers are units which can be used to measure really tiny distances. One picometer is equal to 10^{-12} meters. We know that one centimeter is equal to 10^{-2} m so there are 10^2 cm per meter.
We can change the distance d = 115 pm to units of centimeters.
d = (115 pm) x (10^{-12}m / pm) x (10^2 cm / m)
d = 115 x 10^{-10} cm = 1.15 x 10^{-8} cm
The distance in centimeters is 1.15 x 10^{-8} cm</span>