Explanation:
Your chemical equation should look like this:
Li3PO4 + AlF3 --> 3LiF + AlPO4
This is the balanced equation for a double-displacement reaction
Answer: 1.) His action is not justified because he could have done something else like talking with someone.
2.) Some of the negative consequences could be Mr. King could lose his job or worse not be able to teach again.
3.) Some other options were having him retake the test or talking to the head of the school, or many other things.
Answer:
0.4 M
Explanation:
Molarity is defined as moles of solute, which in your case is sodium hydroxide,
NaOH
, divided by liters of solution.
molarity
=
moles of solute
liters of solution
Notice that the problem provides you with the volume of the solution, but that the volume is expressed in milliliters,
mL
.
Moreover, you don't have the number of moles of sodium hydroxide, you just have the mass in grams. So, your strategy here will be to
determine how many moles of sodium hydroxide you have in that many grams
convert the volume of the solution from milliliters to liters
So, to get the number of moles of solute, use sodium hydroxide's molar mass, which tells you what the mass of one mole of sodium hydroxide is.
7
g
⋅
1 mole NaOH
40.0
g
=
0.175 moles NaOH
The volume of the solution in liters will be
500
mL
⋅
1 L
1000
mL
=
0.5 L
Therefore, the molarity of the solution will be
c
=
n
V
c
=
0.175 moles
0.5 L
=
0.35 M
Rounded to one sig fig, the answer will be
c
=
0.4 M
Explanation:
Zn = 28.15%
Cl = 30.53%
O = 41.32%
<h3>Further explanation</h3>
Given
Zn(CIO3)2 compound
Required
The % composition
Solution
Ar Zn = 65.38
Ar Cl = 35,453
Ar O = 15,999
MW Zn(CIO3)2 = 232.3
Zn = 65,38/232.3 x 100% = 28.15%
Cl = (2 x 35.453) / 232.3 x 100% = 30.53%
O = (6 x 15.999) / 232.3 x 100% = 41.32%