<span>Here we are asked to know the type of bond
between a glycosidic bond. A glycosidic bond is a type of bond that
exists between a carbohydrate molecule to another carbohydrate molecule. A
glycosidic bond creates between two monosaccharides can also be called as an
ether bond.</span>
Answer:
The ΔHrxn for the above equation = 179 kJ/mol
Explanation:
The reaction bond enthalpies are for the reactant;
3 × N-H = 3 × 390 = 1,170 kJ/mol
2 × O=O = 2 × 502 = 1004 kJ/mol
The reaction bond enthalpies are for the product;
3 × N-O = 3 × 201 = 603 kJ/mol
3 × O-H = 3 × 464 = 1,392 kJ/mol
The ΔHrxn for the above equation is therefore;
ΔHrxn = 1,170 + 1,004 - (603 + 1,392) = 179 kJ/mol
Gravity is the force of motion pulling down objects to the ground. If there was no gravity, everyone would walking as if they were on the moon.
Mass is what gravity needs. If an object has a little amount of mass, gravity will be able to easily bring it to the ground.
If an object has a very huge amount of mass, gravity will still be able to bring it to the ground but it will be hard.
For example: An airplane has a HUGE amount of mass. Gravity pulls it down but the airplane needs to be steering up in order for it to be straight. Gravity is applied on the airplane when it is landing.
BUT..... if a table is in the way of an object it depends if it will fall down to the ground or stay on the table.
If an object has little mass and a table is in the way of gravity pulling it down to the ground, the object will stay on the table. Like a plate of food on a table.
If an object has a very big amount of mass and a table is in the way of gravity pulling it to the ground, the object will break the object and make it's make to the ground. That is mostly why most of the time people have very strong tables/ anything to hold a heavy object.
Another example is if you're lifting weights and you have little amount of mass, you're most likely to get the little sized weight. It depend on you mass.
Here are some pictures I included here as well of Mass and gravity.
Glad to help! :) :D