Answer:n = PV/RT = 0.923 atm x 0.250 L / (0.082057 x 290.75 K)
. n = 0.00967. mole 0.00967 mole x 6.22x10^23 molecules/mole = 6.02x10^21 molecules of gas
Explanation:
Answer : The value of work done by an ideal gas is, 37.9 J
Explanation :
Formula used :
Expansion work = External pressure of gas × Volume of gas
Expansion work = 1.50 atm × 0.25 L
Expansion work = 0.375 L.atm
Conversion used : (1 L.atm = 101.3 J)
Expansion work = 0.375 × 101.3 = 37.9 J
Therefore, the value of work done by an ideal gas is, 37.9 J
When multiplying and deviding follow the least number of sf.
since wavelength = 1/period
hence wavelength=1/2.7
=0.37 (2sf)
When it comes to equilibrium reactions in chemistry, there are a lot of equilibrium constants that can be used. In the case of solubility, the appropriate one to use is the equilibrium constant of solubility product denotes as Ksp. This is the concentration of products raised to their coefficients. For example,
cC ⇔ aA + bB
Ksp = {[A^a][B^b]}
Now, for the this problem, the reaction is
BaSO₄ ⇔ Ba²⁺ + SO₄²⁻
The reaction is already balanced. Since we don't know the value of Ba²⁺ and SO₄²⁻, let's denote this at x.
1.1 × 10⁻¹⁰ = [x][x] =[x²]
[x] = [Ba²⁺] = [SO₄²⁻] = [BaSO₄] = 1.049 × 10⁻⁵ M
The rest of the wood was burned into gases of equivalent weight.
<u>Explanation</u>:
The rest of the wood was burned into gases of equivalent weight.
- When wood is burnt in the open air, with the help of oxygen and heat, it is transformed into carbon dioxide, water vapor, and ashes.
- Ignition and combustion of wood mainly depend on pyrolysis which is also known as thermal combustion.
- The loss in weight of the ashes is due to the fact that gases and water vapor are also formed due to the combustion of wood.