Answer: x > − 4
Step-by-step explanation: Divide each term in − 4 x < 16 by − 4 and simplify.
(Try to solve b. and c. with only these resources and if you still need help, let me know.)
Answer:
The probability that a randomly chosen Ford truck runs out of gas before it has gone 325 miles is 0.0062.
Step-by-step explanation:
Let <em>X</em> = the number of miles Ford trucks can go on one tank of gas.
The random variable <em>X</em> is normally distributed with mean, <em>μ</em> = 350 miles and standard deviation, <em>σ</em> = 10 miles.
If the Ford truck runs out of gas before it has gone 325 miles it implies that the truck has traveled less than 325 miles.
Compute the value of P (X < 325) as follows:

Thus, the probability that a randomly chosen Ford truck runs out of gas before it has gone 325 miles is 0.0062.
I could be wrong but i graphed it out and 9 is C , 10 is A , and 11 is C Hopefully it's right
A solid estimate would be 790,000,000
Answer:
Step-by-step explanation:
You have no grounds for making a statement like that. There are a variety of reasons why you might not get immediate answers. Be patient.
I will do the second part of this question (finding the first three numbers):
a(4) = a(3)*(-3) + 2 = -148, so a(3)*(-3) = -150 and a(3) = -50
a(3) = 50
a(2) = a(3)*(-3) + 2 = 50, so -3*a(3) = 48 and a(d) = -16
a(1) = a(2)*(-3) + 2 = -16, so a(2)*(-3) = -18 and a(1) = 6
The procedure for finding a(5), a(6) and a(7) is exactly the same.