1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergio [31]
3 years ago
10

0.07 is one tenth of

Mathematics
1 answer:
mr Goodwill [35]3 years ago
8 0
0.07 is one tenth of 0.7
You might be interested in
in the 2007 season, Magglio Ordonez of the detroit tigers had 216 hits. of the total number of at bats, 36.3% where hits. how ma
Minchanka [31]
595 is the number of at bats he would have in the season.
8 0
3 years ago
Can someone help me with slope
inn [45]

Answer:

Yea sure.

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Steve uses an app that shows him how many kilometers he has run to prepare for a marathon. The app said he ran 6.436 kilometers.
8_murik_8 [283]

Steve ran 4 miles.

Step-by-step explanation:

Given,

Distance = 6.436 kilometers

According to given statement;

1 mile = 1.609 kilometers

Therefore,

Distance in miles = \frac{Distance\ in\ kilometers}{1.609}

Distance in miles =\frac{6.436}{1.609}\\Distance = 4\ Miles

Steve ran 4 miles.

Keywords: Distance, Division.

Learn more about division at:

  • brainly.com/question/6069822
  • brainly.com/question/6073431

#LearnwithBrainly

4 0
3 years ago
The portion of the parabola y²=4ax above the x-axis, where is form 0 to h is revolved about the x-axis. Show that the surface ar
castortr0y [4]

Answer:

See below for Part A.

Part B)

\displaystyle h=\Big(\frac{125}{\pi}+27\Big)^\frac{2}{3}-9\approx7.4614

Step-by-step explanation:

Part A)

The parabola given by the equation:

y^2=4ax

From 0 to <em>h</em> is revolved about the x-axis.

We can take the principal square root of both sides to acquire our function:

y=f(x)=\sqrt{4ax}

Please refer to the attachment below for the sketch.

The area of a surface of revolution is given by:

\displaystyle S=2\pi\int_{a}^{b}r(x)\sqrt{1+\big[f^\prime(x)]^2} \,dx

Where <em>r(x)</em> is the distance between <em>f</em> and the axis of revolution.

From the sketch, we can see that the distance between <em>f</em> and the AoR is simply our equation <em>y</em>. Hence:

r(x)=y(x)=\sqrt{4ax}

Now, we will need to find f’(x). We know that:

f(x)=\sqrt{4ax}

Then by the chain rule, f’(x) is:

\displaystyle f^\prime(x)=\frac{1}{2\sqrt{4ax}}\cdot4a=\frac{2a}{\sqrt{4ax}}

For our limits of integration, we are going from 0 to <em>h</em>.

Hence, our integral becomes:

\displaystyle S=2\pi\int_{0}^{h}(\sqrt{4ax})\sqrt{1+\Big(\frac{2a}{\sqrt{4ax}}\Big)^2}\, dx

Simplify:

\displaystyle S=2\pi\int_{0}^{h}\sqrt{4ax}\Big(\sqrt{1+\frac{4a^2}{4ax}}\Big)\,dx

Combine roots;

\displaystyle S=2\pi\int_{0}^{h}\sqrt{4ax\Big(1+\frac{4a^2}{4ax}\Big)}\,dx

Simplify:

\displaystyle S=2\pi\int_{0}^{h}\sqrt{4ax+4a^2}\, dx

Integrate. We can consider using u-substitution. We will let:

u=4ax+4a^2\text{ then } du=4a\, dx

We also need to change our limits of integration. So:

u=4a(0)+4a^2=4a^2\text{ and } \\ u=4a(h)+4a^2=4ah+4a^2

Hence, our new integral is:

\displaystyle S=2\pi\int_{4a^2}^{4ah+4a^2}\sqrt{u}\, \Big(\frac{1}{4a}\Big)du

Simplify and integrate:

\displaystyle S=\frac{\pi}{2a}\Big[\,\frac{2}{3}u^{\frac{3}{2}}\Big|^{4ah+4a^2}_{4a^2}\Big]

Simplify:

\displaystyle S=\frac{\pi}{3a}\Big[\, u^\frac{3}{2}\Big|^{4ah+4a^2}_{4a^2}\Big]

FTC:

\displaystyle S=\frac{\pi}{3a}\Big[(4ah+4a^2)^\frac{3}{2}-(4a^2)^\frac{3}{2}\Big]

Simplify each term. For the first term, we have:

\displaystyle (4ah+4a^2)^\frac{3}{2}

We can factor out the 4a:

\displaystyle =(4a)^\frac{3}{2}(h+a)^\frac{3}{2}

Simplify:

\displaystyle =8a^\frac{3}{2}(h+a)^\frac{3}{2}

For the second term, we have:

\displaystyle (4a^2)^\frac{3}{2}

Simplify:

\displaystyle =(2a)^3

Hence:

\displaystyle =8a^3

Thus, our equation becomes:

\displaystyle S=\frac{\pi}{3a}\Big[8a^\frac{3}{2}(h+a)^\frac{3}{2}-8a^3\Big]

We can factor out an 8a^(3/2). Hence:

\displaystyle S=\frac{\pi}{3a}(8a^\frac{3}{2})\Big[(h+a)^\frac{3}{2}-a^\frac{3}{2}\Big]

Simplify:

\displaystyle S=\frac{8\pi}{3}\sqrt{a}\Big[(h+a)^\frac{3}{2}-a^\frac{3}{2}\Big]

Hence, we have verified the surface area generated by the function.

Part B)

We have:

y^2=36x

We can rewrite this as:

y^2=4(9)x

Hence, a=9.

The surface area is 1000. So, S=1000.

Therefore, with our equation:

\displaystyle S=\frac{8\pi}{3}\sqrt{a}\Big[(h+a)^\frac{3}{2}-a^\frac{3}{2}\Big]

We can write:

\displaystyle 1000=\frac{8\pi}{3}\sqrt{9}\Big[(h+9)^\frac{3}{2}-9^\frac{3}{2}\Big]

Solve for h. Simplify:

\displaystyle 1000=8\pi\Big[(h+9)^\frac{3}{2}-27\Big]

Divide both sides by 8π:

\displaystyle \frac{125}{\pi}=(h+9)^\frac{3}{2}-27

Isolate term:

\displaystyle \frac{125}{\pi}+27=(h+9)^\frac{3}{2}

Raise both sides to 2/3:

\displaystyle \Big(\frac{125}{\pi}+27\Big)^\frac{2}{3}=h+9

Hence, the value of h is:

\displaystyle h=\Big(\frac{125}{\pi}+27\Big)^\frac{2}{3}-9\approx7.4614

8 0
2 years ago
Read 2 more answers
What is the LCD for 1/8 7/9 and 1/6
frez [133]

Answer:

the least common denominator (LCD) is 24.

Step-by-step explanation:

8 0
2 years ago
Other questions:
  • How do you find the percent of an equation??
    14·2 answers
  • I am supposed to model this question with a inequality equation. Could someone please show me how I would write the equation?
    10·1 answer
  • Answer to number one
    9·1 answer
  • Need help for study guide...REALLY APPRICIATED!!!
    13·1 answer
  • Ms. Armstrong is a carpenter. She keeps her tools in a cube-shaped box in her truck. Ms. Armstrong's toolbox is 15 inches long o
    14·2 answers
  • Instructions: Find the measure of the indicated angle to the nearest degree.<br> ?
    8·1 answer
  • Help me pls! 8 - 5 1/3=?
    10·2 answers
  • Help! Brainly to the first person!
    8·1 answer
  • What could be the answers to this question? It’s very confusing!
    14·1 answer
  • Slove for x. 12x+7&lt;-11 or 5x-8&gt;40​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!