The triangle is a scalene and achte triangle simce the sides are not the same length and the angles are less than ninety degree.
It's given in the question,
P, Q, V and K are collinear.
VP = 14x + 4
PK = x + 630
VQ = 17x + 6
KQ = 11x + 5
By segment addition postulate,
KQ + VQ + VP = KP
Substitute the values in the expression,
(11x + 5) + (17x + 6) + (14x + 4) = x + 630
(11x + 17x + 14x) + (5 + 6 + 4) = x + 630
42x + 15 = x + 630
42x - x = 630 - 15
41x = 615
x = 
x = 15
Therefore, value of VP = (14x + 4)
= 14(15) + 4
= 214 units
Learn more,
brainly.com/question/628239
Answer:
(7a^2 + 8b^2 + 5ab) (7a^2 + 8b^2 - 5ab)
Step-by-step explanation:
Dado que ambos términos son cuadrados perfectos, puede factorizar utilizando la fórmula de la diferencia de cuadrados, a^2 - b^ 2 = (a + b) (a - b), donde a = 7a^2 + 8b^2 y b = 5ab.
English: Since both terms are perfect squares you can factor using the difference of squares formula, a^2 - b^2 = (a + b)(a - b), where a = 7a^2 + 8b^2 and b = 5ab.
Answer:
x = 3 n, y = -2 n, n element Z
Step-by-step explanation: